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DLOAD 1 = symmetrical excitation
DLOAD 2 = antimetrical excitation

Unit force = 1 N mm

grid-ID 31010

grid-ID 31011

. SFE has its own parameterized discrete FEM model which
allows geometry and topology changes.

. Goals: Numerical methods for frequency response and
numerical methods for large scale structured polynomial
eigenvalue problems. Implementation of parallel solver in SFE
Concept.
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Mathematical Modeling
The acoustic field in the car is modeled by the 3-D lossless wave
equation (in air). For this we need:

The continuity equation (conservation of mass):

∂ρ̃

∂t
+∇(ρ̃v) = 0.

The Euler equation (Newton’s Second Law)

ρ̃(
∂v
∂t

+ (v · ∇)v) = −∇p̃

v = v(x ; y ; z; t) particle velocity,
ρ̃ = ρ̃(x ; y ; z; t) particle density,
p̃ = p̃(x ; y ; z; t) pressure.
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Simplifying assumptions

. There is no temperature change.

. The fluid is inviscid (no shear forces).

. No influence of external forces.

. We can make the expansions

p̃ = p0 + p(x ; y ; z; t) with p0 � p (p0 = 106p),

ρ̃ = ρ0 + ρ(x ; y ; z; t) with ρ0 � ρ.

. Adiabatic fluid (no heat exchange during compression).

. Ideal gas ρ = p
c2 where c is the speed of sound.

. (v · ∇)v and ρ∂v
∂t are small.
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PDE Model

Damping/absorption is realized by adding an additional first
order term that includes a material dependent parameter r .
After some manipulations we obtain a second order PDE:

1
c2

∂2p
∂t2 +

r
ρ2

0c2

∂p
∂t
−∆p = 0.

Fluid-structure interaction is modeled via boundary conditions
that describe the displacements of the structure u.
Discretization via FEM in space yields

Mf p̈d + Df ṗd + Kf pd + Dsf üd = 0.

Here Mf = MT
f and Kf = K T

f are positive definite and Df is
symmetric positive semidefinite, Dsf describes the coupling.
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Finite element model: structure

The (discrete) finite element model for the vibration of the
structure (linear materials) is:

Msüd + Dsu̇d + Ksud = fe + fp.

. Here fe is a (discrete) external load and fp is the pressure load.

. Ms,Ds,Ks are real symm. pos. semidef.
mass/damping/stiffness matrices of the structure.

. Ms is singular and diagonal.

. The stiffness matrix Ks = K1(ω) + ıK2 is complex symmetric
and frequency dependent.
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Full model: summary

[
Ms 0
DT

sf Mf

] [
üd

p̈d

]
+

[
Ds 0
0 Df

] [
u̇d

ṗd

]
+

[
Ks(ω) Dsf

0 Kf

] [
ud

pd

]
=

[
fs
0

]
.

. Ms,Mf ,Kf are real symm. pos. semidef. mass/stiffness
matrices of structure and air, Ms is singular and diagonal, Ms

is a factor 1000− 10000 larger than Mf .
. Ks(ω) = Ks(ω)T = K1(ω) + ıK2.
. Ds,Df are real symmetric damping matrices.
. Dsf is real coupling matrix between structure and air.
. Blocks depend on geometry, topology and material

parameters.
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Eigenvalue tracking
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1. Goal: Compute all ev in a typical trapezoidal region.
. Shift-invert block Arnoldi method with many different shifts.
. Many solves with F (λi) = λ2

i M + λiD + K for many λi . We
used the direct solver (MUMPS).
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Shift-invert block Arnoldi

Compute ` eigenvalues in a trapezoidal region and orthogonal
basis S` of corresponding subspace spanned by the evecs and
generalized evecs to these eigenvalues.
The projected system has the form

Q`(λ) := λ2M` + λD` + K` := λ2ST
` MS` + λST

` DS` + ST
` KS`

Open: Guarantee that we found all eigenvalues in a region.
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Shift-invert Arnoldi II
. Mass matrix is singular, this causes convergence problems.
. Large multiplicity at 0, theoretically 6 in real life much higher.
. Codes like ARPACK or Anazazi use a shift-invert

’preconditioner’.

A :=

[
Q(σ)−1 0

0 I

] [
2σM + D M
−I 0

]
.

. The solve is done by the direct solver MUMPS

. One forms the block Krylov subspace

Km(A,B) := span{B,AB,A2B, . . . ,Am−1B},

and runs Gram-Schmidt to get S`.
. B is arbitrary or recycles information.
. AiB is never explicitly formed.
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Example

. Real car model. Regular mesh of 35mm, 219432 dofs

. Evs in triangular region bordered by lines =(λ) > 20<(λ),
=(λ) > −20<(λ), and =(λ) < f · 2π, for
f ∈ {50,100,150,200,250}.

. PC with an Intel Core2 Duo E6850 CPU clocked at 3.0GHz,
with 4Gb RAM.

. One shift was addressed at a time using one processor. The
block size was 5.

0Hz to 50Hz 100Hz 150Hz 200Hz 250Hz
no of found evss 20 52 129 217 346
no of shifts 1 3 3 5 7
no of iterations 39 139 136 294 437
time (sec) 713 3959 3784 21882 32771
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Squeaking brakes

Current project with Audi and Opel and several SMEs (2012-14)
Joint with N. Gräbner, U. von Wagner, TU Berlin, Mechanics and
N. Hoffmann, TU Hamburg-Harburg, Mechanics,
S. Quraishi, C. Schröder, TU Berlin Mathematics.
Goals:
. Develop mechanics based discrete FE model of brake system

with friction contact including circulatory and gyroscopic
effects.

. Identification of energy dissipation effects.

. Model and simulate nonlinear effects in brake behavior near
squeaking frequency.

. Passive and active remedies to avoid squeaking.
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Disk brake

View of the brake model
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Finite element model

Classical discrete FE-Model of disk brake.

Mq̈ + Dq̇ + Kq = 0,

M mass, D damping, K stiffness matrix, all real symmetric.
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Full discrete FE model

Further terms:
. Rotation frequency Ω.
. Geometric stiffness matrix Kgeo = K T

geo proportional to Ω2.

. Gyroscopic matrix DG = −DT
G which is proportional to Ω.

Complete equations of motion

Mq̈ + (D +
1
Ω

DR + ΩDG)q̇ + (K + KR + Ω2Kgeo)q = f .
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Eigenvalue analysis
Undamped model without circulatory and gyroscopic forces:
(λ2M + K + Kgeo)x = 0.

Eigenmodes at 1859 Hz.
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Real Eigenforms

Eigenform at 1873 Hz with positive real part and a phase of
0,45,90 and 135.
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Measurement of brake vibrations

Measurements indicate subcritical Hopf bifurcations, i.e.
eigenvalues crossing imaginary axis for certain disk frequencies.

PDE EVPs 19 / 65



Stability regions, linear vs. nonlinear

Bifurcation diagram linear analysis (blue), nonlinear analysis
(red). Coefficient of friction µ via disk frequency Ω.
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A quick and dirty approach

. Solve first order problem(
λ

[
I 0
0 M

]
−
[

0 I
−K −D

])
z = 0

via shift-and-invert Arnoldi for many frequencies Ωi and
compute space of evecs X (Ωi) to smallest eigenvalues.

. Construct A = [X (Ω1), . . . ,X (Ωs)].

. Extract dominant directions by computing partial singular
value decomposition Ak = Uk ΣkV T

k and use dominant singular
vectors as projection space.
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Proper orthogonal decomposition
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Test example
snapshots for ω = 2π(1,40,80,120,160). Comparison of
eigenvalues for full system o with reduced system x for
ω = 100× 2π.
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Dimension reduction
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Lessons learned

. POD is better than traditional approach but still not
satisfactory.

. Discrete finite elements and quasi-uniform grids followed by
expensive model reduction is really a waste.

. The numerical linear algebra methods that we currently use
are not efficient (also those in commercially available codes).

. For eigenvalue problem everything is partially heuristic.

. Can we make that non-heuristic by developing error
estimates?

. How about AFEM, the adaptive finite element method ?

Can we disprove the engineers that say that uniform mesh and
brute force linear algebra is best.
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Adapative Finite Element Method

. Adaptive Finite Element methods refine the mesh where it is
necessary, and coarsen it where the solution is well
represented.

. They use a priori and a posteriori error estimators to get
information about the discretization error.

. They are well established for PDE boundary value problems.

. But here we want to use them for PDE eigenvalue problems,
which is much harder.
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Adaptive FEM for ev. comp.
Incomplete literature survey:
. Most results and methods only for the self-adjoint elliptic case.
. First results Babuska/Osborn 1989, Strang/Fix 1973.
. a priori estimates Larsson 2001, Knyazev et al. 2006, 2007,

2008.
. a posteriori estimates Verführt 1996, Giani/Graham 2008,

Grubisic/Ovall 2009, Carstensen/Gedicke 2008, 2011, 2013,
Gedicke Diss. 2013, Garau/Morin/Zuppa 2008, Miedlar 2011,
2012, 2013.

. Nonsymmetric problems: Heuveline/Rannacher 2001,
Rannacher 2009, Dahmen et al 2009, Carstensen, Gedicke,
M./ Miedlar 2011,.

. Very few applications in real codes Zschiedrich et al
2007/2008.
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Model problem: Elliptic PDE evp

Model problem (such as disk brake problem without
damping/gyroscopic/circulatory terms)

∆u = λu in Ω
u = 0 on ∂Ω

Classical FEM discretization (with mesh-width H) leads to
generalized discrete evp

AHuH = λHBHuH
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Adaptive FEM for evp

Solve→ Estimate→ Mark→ Refine
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Solve: Weak formulation

Weak formulation:
Determine eigenvalue/eigenfunction pair
(λ,u) ∈ R× V := R× H1

0 (Ω;R) with b(u,u) = 1 and

a(u, v) = λb(u, v) for all v ∈ V ,

where the bilinear forms a(·, ·) and b(·, ·) are defined by

a(u, v) :=

∫
Ω

∇u · ∇v dx , b(u, v) :=

∫
Ω

uv dx for u, v ∈ V .

Induced norms |||·||| := |·|H1(Ω) on V and ‖·‖ := ‖·‖L2(Ω) on L2(Ω).
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Solve: Discrete Formulation

Discrete eigenvalue problem:
Determine eigenvalue/eigenfunction pair (λ`,u`) ∈ R× V` with
b(u`,u`) = 1 and

a(u`, v`) = λ`b(u`, v`) for all v` ∈ V`.
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Solve: algebraic evp Formulation

Algebraic eigenvalue problem: Use coordinate representation
to get the finite-dimensional generalized algebraic evp

A`x` = λ`B`x`

with stiffness matrix A` = [a(ϕi , ϕj)]i,j=1,...,N`, mass matrix
B` = [b(ϕi , ϕj)]i,j=1,...,N`, associated with the nodal basis functions
V` = {ϕ1, . . . , ϕN`}.
Discrete eigenvector: x` =: [x`,1, . . . , x`,N`]

T .
Approximated eigenfunction:

u` =

N∑̀
k=1

x`,kϕk ∈ V`.
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Estimate

Estimate the error a posteriori via

|λ− λ`|+ |||u − u`|||2 . η2
` := |||u`−1 − u`|||2.

Here . denotes an inequality that holds up to a multiplicative
constant.
A posteriori error estimators for Laplace eigenvalue problem
Grubisic/Ovall 2009, M./Miedlar 2011, Neymeyr 2002
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Mark

. For a triangulation T` let N` (resp. N`(Ω)) denote the set of
nodes (resp. interior nodes) and let E` (resp. E`(Ω)) denote
the set of edges ( resp. interior edges).

. For a node z ∈ N`, we denote by E`(z) the set of edges in E`
and by ωz the union of triangles in T` that share the node z.

. The maximal mesh-size is denoted by H` := maxT∈T` diam(T ).

. For E ∈ E`(Ω) let T+,T− ∈ T` be the two neighboring triangles
such that E = T+ ∩ T−.

. The jump of the discrete gradient ∇u` along an inner edge
E ∈ E`(Ω) in normal direction νE , pointing from T+ to T−, is
defined by [∇u`] · νE :=

(
∇u`|T+ −∇u`|T−

)
· νE .
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Marking strategy
Employ an edge residual a posteriori error estimator
Duran et al 2003, Carstensen/Gedicke 2008.

η2
` :=

∑
E∈E`(Ω)

η2
` (E) with η2

` (E) := |E |‖[∇u`] · νE‖2
L2(E),

which is reliable and efficient for sufficiently small mesh-size H0

|||u − u`||| ≈ η`.

Based on the local refinement indicators η`(E), nodes are
marked for refinement.
Let M` ⊆ N`(Ω) be the minimal set of refinement nodes such that
for 0 < θ ≤ 1

θ
∑

z∈N`(Ω)

η2
` (E`(z)) ≤

∑
z∈M`

η2
` (E`(z)).
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Refine

. For each refinement node z ∈M` ⊆ N`(Ω), mark all edges
E`(z) for refinement and then use a closure algorithm.

. The refinement T`+1 is computed by the application of one of
the following rules where all triangles T ⊆ ωz , z ∈M`, are
refined either red or blue.
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Convergence on L-shape domain.
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Approx. of smallest ev

ref. level #DOF A λ̃1 A |λ1 − λ̃1|
1 5 13.1992 3.5595
2 27 10.8173 1.1775
3 99 9.9982 0.3584
4 306 9.7721 0.1323
5 641 9.6982 0.0585
6 1461 9.6652 0.0255
7 2745 9.6528 0.0131
8 5961 9.6455 0.0058
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Evaluation of AFEM

. AFEM works nicely for elliptic self-adjoint evps.

. For the analysis in most AFEM methods it is assumed that the
algebraic evp is solved exactly.

. But this requires the largest percentage of the computing time.

. The solution of the algebraic evp is only used to determine
where the grid is refined. This is a complete waste of
computational work.

. How we can incorporate the solution of the algebraic
eigenvalue problem (AEVP) into the adaptation process?
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AFEMLA

Solve:
. compute eigenpair (λ̃H , ũH) on the coarse mesh,
. use iterative solver, i.e. Krylov subspace method,
. but do not solve very accurately, stop after k steps or when

tolerance tol is reached.
Estimate:
. prolongate ũH from the coarse mesh TH to the uniformly

refined mesh Th,
. Balance residual vector r̂h and error estimate Miedlar 2011.
Mark and Refine: mark elements and refine the mesh.
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Standard AFEM versus AFEMLA

Solve→ Estimate→ Mark→ Refine

Standard AFEM AFEMLA
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Conv. history AFEMLA
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Evaluation of AFEMLA

. AFEMLA works nicely for elliptic self-adjoint evps.

. It significantly reduces the computing time.

. Balancing of discretization and LA error possible, Miedlar
2011.

. Convergence if saturation property holds, i.e.,
|λh − λ| ≤ β|λH − λ|
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Saturation property

Theorem (Carstensen/Gedicke/M./Miedlar 2013)

Suppose that the initial triangulation T0 has sufficiently small
maximal mesh-size H0. Then there exists 0 ≤ % < 1 such that for
all ` ∈ N0 the following inequalities hold

|||u − u`+1|||2 ≤ %|||u − u`|||2 + λ3
`+1H4

` ;

|λ− λ`+1| ≤ %|λ− λ`|+ λ3
`+1H4

` .
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Conv. first 3 evs, L-shape domain.
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Adaptive Mesh, first 3 evs
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Errors for three smallest eigenvalues

ref. level 1 2 3 4 5 6 7 8
#DOF 5 33 133 465 1306 2770 4997 11499

A λ̃1 A 13.1992 10.5542 9.9192 9.7376 9.6817 9.6591 9.6496 9.6440

A λ̃2 A 22.0215 16.9097 15.6315 15.3211 15.2421 15.2184 15.2085 15.2024

A λ̃3 A 32.0000 22.9075 20.5262 19.9515 19.8089 19.7760 19.7569 19.7482

ref. level 1 2 3 4 5 6 7 8

A |λ1 − λ̃1|A 3.5595 0.9144 0.2795 0.0979 0.0420 0.0194 0.0099 0.0043

A |λ2 − λ̃2|A 6.8242 1.7125 0.4342 0.1239 0.0448 0.0211 0.0112 0.0051

A |λ3 − λ̃3|A 12.2608 3.1683 0.7870 0.2123 0.0697 0.0367 0.0177 0.0090
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A simple non-self-adjoint model problem
Carstensen/Gedicke/M./Miedlar 2009
Convection-diffusion eigenvalue problem:

−∆u + γ · ∇u = λu in Ω and u = 0 on ∂Ω

Discrete weak primal and dual problem:

a(u`, v`) + c(u`, v`) = λ`b(u`, v`) for all v` ∈ V`,

a(w`,u?` ) + c(w`,u?` ) = λ?`b(w`,u?` ) for all w` ∈ V`.

Generalized algebraic eigenvalue problem:

(A` + C`)u` = λ`B`u` and u?`(A` + C`) = λ?`u
?
`B`

The eigenvalue with the smallest real part, which is proved to be
simple and well separated Evans ’00, is considered.
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Homotopy method

H(t) = (1− t)L0 + tL1 for t ∈ [0,1],

where L0u := −∆u and L1u := −∆u + β · ∇u.
Discrete homotopy for the model eigenvalue problem:

H`(t) = (A` + C`)(t) = (1− t)A` + t(A` + C`) = A` + tC`.
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Four errors

Homotopy, discretization, approximation and iteration error.
Homotopy error:

|λ(1)− λ(t)| . (1− t)‖γ‖L∞(Ω)‖u‖A = ν,

Discretization error:

‖λ(t)− λ`(t)‖ .
∑
T∈T`

(
η2
` (T ) + η?2

` (T )
)
.

Approximation error:

|λ`(t)− λ̃`(t)|+ |λ?`(t)− λ̃?`(t)| ≤ µ`.

Iteration error: The iterative eigensolver should be stopped early.
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A posteriori error estimator

Lemma
For the model problem, the difference between the iterative
eigenvalue λ̃`(t) in the homotopy H`(t) and the continuous
eigenvalue λ(1) of the original problem can be estimated a
posteriori via

‖λ(1)− λ̃`(t)‖ . ν(λ̃`(t), ũ`(t), ũ?` (t)) + η2(λ̃`(t), ũ`(t), ũ?` (t))

+ µ2(λ̃`(t), ũ`(t), ũ?` (t))

in terms of

ν(λ̃`(t), ũ`(t), ũ?` (t)) := (1− t)‖γ‖∞ (|||ũ`(t)|||+ |||ũ?` (t)|||)

+ (1− t)‖γ‖∞
(
η(λ̃`(t), ũ`(t), ũ?` (t)) + µ(λ̃`(t), ũ`(t), ũ?` (t))

)
.
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Adaptive homotopy algorithms

Solve→ Estimate→ Mark→ Refine

Algorithm 1: Balances the homotopy, discretization, iteration
and approximation errors but uses fixed stepsize in continuation
method.
Algorithm 2: Adaptivity in homotopy and in the iteration is
achieved by simple stepsize control, no homotopy error is
considered.
Algorithm 3: Adaptivity in the homotopy error, the discretization
error, the iteration error including step size control.
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Error dynamics
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Figure: Conv. history of Algorithm 1, 2 and 3 with respect to #DOF.
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Figure: Conv. history of Algorithm 1, 2 and 3 with respect to CPU time.
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λ ≈ 44.739208802205724
t η`(t) ν`(t) µ`(t) est. error

0.0000 23.0271 95.6366 0.2701265 118.93382
0.5000 32.6896 51.7112 0.0843690 84.48512
0.7500 11.6020 28.5244 0.4515713 40.57800
0.8750 6.7380 15.4099 0.4711298 22.61912
0.9375 7.8500 7.9782 0.0272551 15.85547
0.9688 3.2088 4.0697 0.2891100 7.56762
0.9844 1.2060 2.0673 0.4278706 3.70119
0.9922 0.4560 1.0380 0.0004539 1.49451
0.9961 0.4602 0.5202 0.0029006 0.98322
0.9980 0.1864 0.2608 0.0012530 0.44843
0.9990 0.0707 0.1305 0.0204610 0.22162
0.9995 0.0282 0.0653 0.0003639 0.09386
0.9998 0.0282 0.0326 0.0001766 0.06105
0.9999 0.0106 0.0163 0.0001521 0.02703
1.0000 0.0007 0.0000 0.0000243 0.00073
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Errors and DOFs
t λ̃`(t)

|λ`(1)−λ̃`(t)|
|λ`(1)| #DOF CPU time

0.0000 22.86578 0.48891 25 0.76
0.5000 26.73866 0.40234 25 1.20
0.7500 32.54928 0.27247 55 1.55
0.8750 38.00079 0.15062 107 2.18
0.9375 40.73818 0.08943 107 3.07
0.9688 42.39339 0.05243 197 4.01
0.9844 43.77023 0.02166 385 6.06
0.9922 44.13547 0.01349 715 9.74
0.9961 44.32847 0.00918 715 16.59
0.9980 44.58151 0.00352 1398 23.57
0.9990 44.65025 0.00199 2494 37.14
0.9995 44.68298 0.00126 4848 66.70
0.9998 44.69522 0.00098 4848 119.47
0.9999 44.72311 0.00036 8785 175.75
1.0000 44.73615 0.00007 55235 226.87
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Conclusions

. Eigenvalue methods are important in practice for stability
analysis and model reduction.

. Using a fine mesh and then doing model reduction usually
works fine, but hardly any error estimates exist.

. Discrete finite elements and quasi-uniform grids are a waste.

. The current numerical linear algebra methods (also those in
commercially available codes) are not satisfactory. AFEMLA is
an alternative, it gives error bounds for reduced order model.

. Extension of backward error analysis to infinite dimensional
case Miedlar 2011/2013

. A posteriori error estimates for hp-finite elements for
non-self-adjoint PDE evps Giani/Grubisic/Miedlar/Ovall 2013
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Future Research

. Development of good preconditioned iterative solvers for
F (λi) = λ2

i M + λiD + K for many λi .
. Adaptive FEM for non-self adjoint eigenvalue problems need

to be developed and made industrially available.
. Complex and multiple eigenvalues, no theory, no methods.
. A posteriori and a priori error estimates for non-self-adjont

acoustic problems.
. Real world solvers.
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Thank you very much
for your attention.
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