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1 DDM

Reasons for Domain Decomposition

� subdomains correspond to a simpler pde (constant coe�cients / coe�cients
of similar size / same pde)

� problems in subdomains easy to solve

� storage distribution



Here:

Assume an elliptic boundary value problem in 
 � R3 with locally very smooth
(analytic) solutions. Point and edge singularities may occur.

Divide 
 into subdomains 
� such that the pde on 
� allows a discretisation

by a physically uniform grid; i.e., the grid has nodal points

(xi; yj; zk) 2 
� for 1 � i � n1; 1 � j � n2; 1 � k � n3
(there are transformations T� of a parallelopiped Q� = [a1; b1]�[a2; b2]�[a1; b1]
onto 
� and (xi; yj; zk) = T�(x0 + (ihx; jhy; khz))).

Then one can hope to solve the subproblems with a cost (storage+time) related

to X3

j=1
lognj = log(n1n2n3):

� Better cost vs. accuracy ratio than for spectral / p / hp methods.

� Almost no overhead. Black-box approach.

� No standard adaptive approach.

� Direct computations.



Coupling formulation, e.g., by DG:

aDG(u; v) :=
X
i

Z

i
hru;rvi dx

�
X
i

Z
@
i

(
@u

@ni

)
[v]�

(
@v

@ni

)
[u] ds

+ �
X
i

j@
ij�1
Z
@
i

[u] [v] ds:

(example for �).

This allows an

� inexact solution of the subdomain problems

� inexact evaluation of the boundary data.

The accuracy is less determined by the step size (since it can be rather �ne), but

by the truncation to certain tensor ranks; i.e., the tensor rank is a more relevant

parameter than the step size.

There is a direct control of the truncation error by the ranks (via SVD).



2 Tensors - Introduction

2.1 Tensors and Tensor Spaces

Given vector spaces Vj for j = 1; : : : ; d (of any dimension), the algebraic tensor

space

V := V1 
 V2 
 : : :
 Vd
is well-de�ned. Particular examples of Vj :

function spaces: Vj = L
2(
j);

grid functions: Vj = Rnj ;
operators: Vj = L(H10(
j); H�1(
j)); e.g., � 2 V;
matrices: Vj = Rnj�mj :

Any element of a tensor space is called tensor.

Topological tensor space: Vj and V equipped with certain norms;

V completed w.r.t. to its norm yields a Banach (or Hilbert) space.



2.2 Numerical Tensor Calculus

1) Representation - Storage:

Original data size of general tensors in
Nd
j=1R

nj is
Qd
j=1 nj (= n

d):

Try to represent tensors of interest by data of acceptable size .

Note that the grid functions (`vectors') as well as the system matrices are

considered as tensors.

2) Operations:

Given representations of tensors and an operation (e.g., the matrix-vector multi-

plication), �nd the (approximate) representation of the result of the operation.

The standard requirement is that the cost of the algorithm is related to the data

sizes of the tensors.

Of particular interest for the present problem, is the solution of linear systems.



2.3 Tensor Operations

addition: v +w,

scalar product: hv;wi

matrix-vector multiplication:

 
dN
j=1

A(j)
! 

dN
j=1

v(j)
!
=

dN
j=1

A(j)v(j);

Hadamard product: (v �w) [i] = v[i]w[i]; pointwise product of functions0@ dO
j=1

v(j)

1A�
0@ dO
j=1

w(j)

1A = dO
j=1

v(j) � w(j);

convolution: v;w 2 Nd
j=1Rn : u = v ?w with ui =

P
0�k�i vi�kwk0@ dO

j=1

v(j)

1A ?
0@ dO
j=1

w(j)

1A = dO
j=1

v(j) ? w(j):



3 Tensor Representations

3.1 r-Term Format (Canonical Format)

By de�nition, each algebraic tensor v 2 V = V1
 V2
 : : :
 Vd has a represen-
tation

v =
rX
�=1

v
(1)
� 
 v(2)� 
 : : :
 v(d)� with v

(j)
� 2 Vj

and suitable r. Set

Rr :=

8<:
rX
�=1

v
(1)
� 
 v(2)� 
 : : :
 v(d)� : v

(j)
� 2 Vj

9=;

Storage: rdn (for n = max dimVj):

If r is of moderate size, this format is advantageous.

Often, a tensor v is replaced by an approximation v" 2 Rr with r = r("):



Successful example of an r-term approximation

The discrete Laplace operator (any separable operator) is of the form

A = T1 
 I 
 : : :
 I + : : :+ I 
 : : :
 I 
 Td:

Solution of discrete Poisson problem: A�1 � Br with Br of the form

Br =
rX
i=1

ai

dO
j=1

exp(�biTj) 2 Rr ;

where ai; bi > 0 are explicitly known.

Helpful for preconditioning.

Error estimate: Br �A�1
2
� O(exp(�cr1=2)):

Easy to compute, even for Tj 2 R1000�1000 and d = 1000; i.e., Br 2 RM�M

with M = 10001000.



3.2 Matricisation and �-Ranks

Vj = Rnj , V =
Nd
j=1R

nj ; D := f1; : : : ; dg:

Given a true subset � � D; regroup the indices of v[i1; : : : ; id] into the two

tuples i� := (ij : j 2 �) and i�c; where �c := Dn�:

Matricisation:

v 7!M� :=M�(v) 2 Rn��n�c

with n� :=
Q
j2� nj de�ned by the entries

M�[i�; i�c] := v[i1; : : : ; id]:

�-th rank:

rank�(v) := rank(M�(v)):



4 Hierarchical Format

4.1 Dimension Partition Tree

Example: v 2 V = V1 
 V2 
 V3 
 V4: There are subspaces

U1 � V1; U2 � V2; U3 � V3; U4 � V4;
Uf1;2g � V1 
 V2; Uf3;4g � V3 
 V4

such that

v 2 spanfvg � Uf1;2g 
Uf3;4g � V
� �

Uf1;2g � U1 
 U2 Uf3;4g � U3 
 U4
� � � �

U1 � V1 U2 � V2 U3 � V3 U4 � V4

There are optimal subspaces U� := Umin� (v) with dimU� = rank�(v):

Dimension partition tree:

Any binary tree TD with root D := f1; : : : ; dg and leaves f1g; f2g; : : : ; fdg:



4.2 Algorithmic Realisation

Typical situation: Uf1;2g � U1 
 U2 (nestedness property):

Bases: U1 = span
1�i�r1

fb(1)i g; U2 = span
1�j�r2

fb(2)j g; Uf1;2g = span
1�`�rf1;2g

fb(f1;2g)` g:

b
(f1;2g)
` =

r1X
i=1

r2X
j=1

c
(f1;2g;`)
ij b

(1)
i 
 b(2)j

Basis vectors b
(j)
� 2 Vj (1 � j � d) are explicitly stored, for other nodes store

the coe�cient matrices

C(�;`) =
�
c
(�;`)
ij

�
ij
2 Kr�1�r�2:

The tensor is represented by v = c1b
(D)
1 .

r = (r�)�2TD tuple of ranks. Then

Hr = fv 2 V : rank�(v) � r� for all � 2 TDg (1)



Properties of Hr

1) Storage: r := max� r�; n := maxj dim(Vj),

(d� 1)r3 + drn

Linearity in d:

2) Operations: recursive algorithm, typical operation cost:

O(dr4 + dnr2)

Furthermore:

� HOSVD (higher-order singular value decomposition),
� quasi-optimal truncation,
� numerical stability



Case of d = 3

Tree:

f1,2,3g
/ n

f1,2g 3
/ n

1 2

Trace of v(x; y; z) at z = z0:

1) evaluate the basis vectors fb(3)j : 1 � j � r3g of U3 at z = z0;

2) vjz=z0 = c1b
(D)
1 jz=z0 = c1

rf1;2gP
i=1

 
r3P
j=1

c
(D;1)
ij b

(3)
j jz=z0

!
b
(f1;2g)
i 2 Uf1;2g:

Similar for traces at x = x0; y = y0 or for Neumann boundary values.



5 Solution of Linear Systems

Linear system

Ax = b;

where x;b 2 V =
Nd
j=1 Vj andA 2 Nd

j=1L(Vj; Vj) � L(V;V) are represented
in one of the formats (e.g., A: r-term format, x;b: hierarchical format):

Standard linear iteration:

xm+1 = xm �B (Ax� b) :

) representation ranks blow up.

Therefore truncations T are used (`truncated iteration'):

xm+1 = T (xm �B (T (Ax� b))) :

Cost per step: nd � powers of the involved representation ranks.



xm+1 = T (xm �B (T (Ax� b)))

Choice of B:

If A corresponds to an elliptic pde of order 2, choose a separable, spectrally

equivalent ~A ) B � ~A�1 has a simple r-term format.

Obvious variants: cg-like methods

Literature:

Khoromskij 2009, Kressner-Tobler 2010, Kressner-Tobler 2011 (SIAM),

Kressner-Tobler 2011 (CMAM), Osedelets-Tyrtyshnikov-Zamarashkin 2011,

Ballani-Grasedyck 2013, Savas-Eld�en 2013

Remark: For d = 2; these linear systems may be written as matrix equations:

(A
 I + I 
A)x = b , AX +XA = B (Lyapunov)

(cf. Benner-Breiten 2013).



Variational Approach

De�ne

�(x) := hAx;xi � 2 hb;xi

if A is positive de�nite or

�(x) := kAx� bk2 or

�(x) := kB (Ax� b)k2

and try to minimise �(x) over all parameters of x appearing in a �xed format.

Literature:

Espig-Hackbusch-Rohwedder-Schneider, Falc�o-Nouy,

Holtz-Rohwedder-Schneider, Mohlenkamp, Osedelets,...

So far:

cost = O(number of iterations � d �
h
rank4 + n � rank2

i
);

n : number of nodal points in one direction:



6 Tensorisation

Vj = Rn ) storage: rdn+ (d� 1)r3. Now: n! O(logn)

Let the vector y 2 Rn represent the grid values of a function in (0; 1]:

y� = f
�
�+ 1

n

�
(0 � � � n� 1) :

Choose, e.g., n = 2d; and note that Rn �= V : =
Nd
j=1R2.

Isomorphism by binary integer representation:

� =
Pd
j=1 �j2

j�1 with �j 2 f0; 1g; i.e.,

y� = v[�1; �2; : : : ; �d�1; �d].

Algebraic Function Compression (black-box procedure)

1) Tensorisation: y 2 Rn 7�! v 2 V (storage size: n = 2d)

2) Apply the tensor truncation: v 7�! v"
3) Observation: often the data size decreases from n = 2d to O(d) = O(logn):



EXAMPLE

y 2 Cn with y� = �� leads to an elementary tensor v 2 V; i.e.,

v =
dO
j=1

v(j) with v(j) =

"
1

�2
j�1

#
2 C2:

Storage size = 2d = 2 log2 n:

Consequence:

All functions f 2 C((0; 1]), which can be well-approximated by r trigonometric
terms or exponential sums with r terms (even with complex coe�cients) can be

approximated by a tensor representation with data size

2dr = O(r logn):



Hierarchical Format, Matricisation

Tree:
1 | f1,2g | f1,2,3g | . . . f1,. . . ,d-1g | f1,. . . ,dg
� � � . . . �

2 3 4 . . . d
(also called TT format)

Consider the tensorisation v 2 Nd
j=1R2 of the vector y = (y0; : : : ; yn�1) 2 Rn:

The matricisation for � = f1; : : : ; jg (1 � j � d� 1) yields

M�(v) =

26664
y0 ym � � � yn�m
y1 ym+1 � � � yn�m+1
... ... ...
ym�1 y2m�1 � � � yn�1

37775 with m := 2j:

Recall: rank�(v) = dimM�(v):



Polynomials

f polynomial of degree p) rank�(v) = dimM�(v) � p+ 1:

hp method, i.e., piecewise polynomial

Singularity at x = 0; partition:

[0; 1n]; [
1
n;
2
n]; [

2
n;
4
n]; : : : ; [

1
4;
1
2]; [

1
2; 1]:

Local polynomials of degree p) rank�(v) = dimM�(v) � p+ 2:

Conclusion: If any hp approximation with a piecewise polynomial P of degree

� p exists, then the tensorised grid function f can be approximated by a tensor
~f such that the ranks are bounded by p+ 2 andf � ~f

2
� kf �Pk2

The data size is bounded by

� 2d (p+ 2)2 :
The computation of ~f is completely black-box (e.g., no information about loca-
tion of the singularity required).



Treatment of Multivariate (Grid) Functions

So far, basis vectors

fb(j)� : 1 � � � rjg � Uj
are required for all directions 1 � j � d(= 3):

Assume nj = 2
dj for the size of b

(j)
� 2 Rnj and use the tensorised representation.

The data size may decrease from O(
h
r3 + n � r

i
) to O(r3 + r logn):

The corresponding cost of operations is

O(r4 + r2 logn):

This allows the use of very large n; e.g., n = 230 = 1; 073; 741; 824:

Consequence: no adaptive discretisation.



Conclusions

Standard Paradigm:

- Work more or less proportional to the dimension of the ansatz space

- Given an accuracy requirement, minimise this dimension

- consequence: adaptive approaches, hp ansatz, big overhead

Instead for the case of Cartesian domain:

- Uniform discretisation with very �ne step size

- Tensorisation leads to reduction to logarithmic work

- almost no overhead / no adaptivity

- basic operations: standard matrix operations, QR, SVD (size: rank)

- error control mainly by tensor truncations to suitable tensor ranks.

DDM: create subdomains which are images of Cartesian domains.
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