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INTRODUCTION

Start from an elliptic problem{
Lu = f x ∈ Ω
u = 0 x ∈ ∂Ω

Given 2 linear operators S1 6= S2, we notice that it is equivalent to

Lu1 = f x ∈ Ω1
u1 = 0 x ∈ ∂Ω1 \ Σ1
(S1 + ∂n)u1 = (S1 + ∂n)u2 x ∈ Σ1
(S2 + ∂n)u2 = (S2 + ∂n)u1 x ∈ Σ2
u2 = 0 x ∈ ∂Ω2 \ Σ
Lu2 = f x ∈ Ω2

For its solution we consider a block-Gauss-Seidel algorithm →
Generalized Schwarz method (Lions, 1990; Ciarton, Nataf, Rogier, 1991; Gander, 2006)

(for S1→∞ and S2→∞ we have the Classical Schwarz method)

Optimized Schwarz methods are obtained by looking for
S1, S2 ∈ C ⊂ L(H1/2, H−1/2) which guarantee the best convergence
factor in the subset C (Japhet, 1998)



STATE OF THE ART

Optimized Schwarz methods applied to a great variety of problems

- Advection-reaction-diffusion problems Japhet et al, FGCOS 2001; Gander, SINUM 2006;

- Helmholtz equation Gander et al, SISC 2002; Magoules et al, CMAME 2004;

- Coupling of heterogeneous media Gander and Halpern, SINUM 2007; Maday and Magoules,

CMAME 2007;

- Shallow water equations Quaddouria et al, ANM 2008;

- Maxwell’s equations Dolean et al, SISC 2009;

- The scattering problem Stupfel, JCP 2010;

- The fluid-structure interaction problem Gerardo-Giorda, Nobile, V., SINUM 2010.



MOTIVATIONS

These works addressed flat interfaces

In some applications the interfaces are not flat,
for example they could be “cylindrical”

Example: Haemodynamics

Aim of this work:
Extend the analysis and the optimization to cylindrical interfaces



THE DIFFUSION-REACTION PROBLEM (Gigante, Pozzoli, V., Submitted)

Consider the problem −4u + ηu = f, x ∈ Ω ≡ R3, η > 0,

decompose Ω into two overlapping subdomains

Ω1 := {(r, ϕ, z) : r < b, ϕ ∈ [0, 2π), z ∈ R},
Ω2 := {(r, ϕ, z) : r > a, ϕ ∈ [0, 2π), z ∈ R}, 0 < a ≤ b

Then, consider the Classical Schwarz Method at iteration n (S1 →∞, S2 →∞)

Given u0
2 solve for n ≥ 0 until convergence

1. The problem in the subdomain 1
(η −∆cyl)u

n
1 = f in Ω1,

un1 = un−1
2 r = b, (ϕ, z) ∈ [0, 2π)× R,∫∞

−∞
∫ 2π

0 |u
n
1(r, ϕ, z)|dϕdz bounded as r → 0+,

un1 = 0 in {z = ±∞, r ≤ b} ;

2. The problem in the subdomain 2
(η −∆cyl)u

n
2 = f in Ω2,

un2 = un1 r = a, (ϕ, z) ∈ [0, 2π)× R,
un2 = 0 in {r = +∞} ∪ {z = ±∞, r ≥ a} .

where ∆cyl = 1
r
∂
∂r

(
r ∂∂r
)

+ 1
r
∂2

∂ϕ2 + ∂2

∂z2



CONVERGENCE OF THE CLASSICAL SCHWARZ METHOD

Introduce the Fourier transform in the cylindrical variables ϕ and z

ĝ (r,m, k) = F cyl (g) :=

∫ +∞

−∞

∫ 2π

0

g (r, ϕ, z) e−imϕdϕe−ikzdz,

where m ∈ Z and k ∈ R are the coordinates in the frequency domain. Applying it to the previous iterations,

we obtain the following ODE’s

η ûj
n − 1

r

∂

∂r

(
r
∂ûj

n

∂r

)
+

1

r2
m2ûj

n + k2ûj
n = 0 j = 1, 2,

These are essentially modified Bessel equations whose solutions are AIm (αr) + BKm (αr) , for suitable

coefficients A and B with α =
√
k2 + η.

Im and Km are the Bessel functions of imaginary argument (Lebedev, 1972)

Proposition 1 The reduction factor of the Classical Schwarz Method is

ρcylcla(m, k) =
Im(αa)

Im(αb)

Km(αb)

Km(αa)

(
Flat case: ρflatcla (k) = e−2

√
k2+η(b−a); Gander, 2006

)
We have ρcylcla(m, k) ≤ 1 with ρcylcla(m, k) = 1 iff a = b (no overlap)



THE GENERALIZED SCHWARZ METHOD

Given u0
2 solve for n ≥ 0 until convergence

1. The problem in the subdomain 1
(η −∆cyl)u

n
1 = f in Ω1,(

S1 + ∂
∂r

)
un1 =

(
S1 + ∂

∂r

)
un−1

2 r = b, (ϕ, z) ∈ [0, 2π)× R,∫∞
−∞
∫ 2π

0 |u
n
1(r, ϕ, z)|dϕdz bounded as r → 0+,

un1 = 0 in {z = ±∞, r ≤ b} ;

2. The problem in the subdomain 2
(η −∆cyl)u

n
2 = f in Ω2,(

S2 + ∂
∂r

)
un2 =

(
S2 + ∂

∂r

)
un1 r = a, (ϕ, z) ∈ [0, 2π)× R,

un2 = 0 in {r = +∞} ∪ {z = ±∞, r ≥ a} .

Proposition 2 The reduction factor of the Generalized Schwarz Method is

ρcyl(m, k) =
σ1

(
−Km(αb)
K ′m(αb)

)
− α

σ1

(
Im(αb)
I ′m(αb)

)
+ α

·
σ2

(
Im(αa)
I ′m(αa)

)
+ α

σ2

(
−Km(αa)
K ′m(αa)

)
− α

where σj(m, k) denote the symbols of Sj (Flat case: ρflat(k) = σ1−α
σ1+α ·

σ2+α
σ2−α

e−2
√
k2+η(b−a); Gander, 2006)

Proposition 3 The Generalized Schwarz Method converges faster than the Classical Schwarz Method,

provided that

σ1 > −
1

2
α

(
I ′m(αb)

Im(αb)
+
K ′m(αb)

Km(αb)

)
, σ2 < −

1

2
α

(
I ′m(αa)

Im(αa)
+
K ′m(αa)

Km(αa)

)
. (1)

In particular, under conditions (1), ρcyl(m, k) < 1 for a = b (no overlap)



OPTIMIZATION FOR CYLINDRICAL INTERFACES
(Gigante, Pozzoli, V., Submitted)

Reduction factor:

ρcyl(m, k) =
σ2 (m, k) Im (αa) + αI ′m (αa)

σ2 (m, k)Km (αa) + αK ′m (αa)
· σ1 (m, k)Km (αb) + αK ′m (αb)

σ1 (m, k) Im (αb) + αI ′m (αb)

→ The optimal choices of σ1 and σ2 are

σcyl1,opt (m, k) = −αK
′
m (αb)

Km (αb)
= σflat1,opt(k)

K ′m (αb)

Km (αb)
> 0,

σcyl2,opt (m, k) = −αI
′
m (αa)

Im (αa)
= σflat2,opt(k)

I ′m (αa)

Im (αa)
< 0.

providing a correction of the values obtained from the flat analysis (Gander, 2006):

σflat1,opt(k) = α =
√
k2 + η, σflat2,opt(k) = −α = −

√
k2 + η

These symbols give operators S1 and S2 that are difficult to use numerically → 3 different approaches:

1) Constant approximations for localized frequencies

2) Second order approximation for localized frequencies

3) Uniformly optimized approximations



1) Constant approximations for localized frequencies
Evaluate σcylj,opt for k = k0, m = m0:

σcyl1,T0(m0, k0) = −
√
k2

0 + η
K ′m0

(√
k2

0 + η b
)

Km0

(√
k2

0 + η b
), σcyl2,T0(m0, k0) = −

√
k2

0 + η
I ′m0

(√
k2

0 + η a
)

Im0

(√
k2

0 + η a
).

Note: For k0 = m0 = 0 we obtain

σcyl1,T0(0, 0) = −√η
K ′0
(√

η b
)

K0

(√
η b
) > 0, σcyl2,T0(0, 0) = −√η

I ′0
(√

η a
)

I0

(√
η a
) < 0.

Proposition 4 If the only non-vanishing angular frequency is m = 0 →
i) For the Classical Schwarz Method with overlap b− a = O(h) the maximum of the reduction factor has the

following asymptotic behavior:

max
kmin≤k≤kmax

|ρcylcla(0, k)| = |ρcylcla(0, 0)| = 1−√η
(
K1(
√
ηa)

K0(
√
ηa)

+
I1(
√
ηa)

I0(
√
ηa)

)
h + O(h2),

ii) For the Generalized Schwarz Method with constant approximations of the optimal symbols and without

overlap, the maximum of the reduction factor behaves as

max
kmin≤k≤kmax

|ρcylT0(0, k, 0, 0)| = |ρcylT0(0, kmax, 0, 0)| = 1−
2
√
η

π

(
K1(
√
ηa)

K0(
√
ηa)

+
I1(
√
ηa)

I0(
√
ηa)

)
h + O(h2).

The asymptotic performance of the Classical Schwarz Method with overlap of the order of h is the same of

the Generalized Schwarz Method with constant interface approximations of the optimal symbols and without

overlap (as in the flat case, see Gander, 2006)



2) Second order approximation for localized frequencies k0

σcyl1,T2 (m0, k0, k) = −
√
k2

0 + η
K ′m0

(√
k2
0+ηb

)
Km0

(√
k2
0+ηb

) + b
2

[(
K ′m0

(√
k2
0+ηb

)
Km0

(√
k2
0+ηb

))2

−
(

1 +
m2

0
(k2

0+η)b2

)]
(k2 − k2

0),

σcyl2,T2 (m0, k0, k) = −
√
k2

0 + η
I ′m0

(√
k2
0+ηa

)
Im0

(√
k2
0+ηa

) + a
2

[(
I ′m0

(√
k2
0+ηa

)
Im0

(√
k2
0+ηa

))2

−
(

1 +
m2

0
(k2

0+η)a2

)]
(k2 − k2

0).

Remark: These approximations hold also for k0 6= 0!

Reduction factors m = 0, k0 = 0, η = 1, a = 0.495, b = 0.5.

Left: m0 = 0; Right: m0 = 1.



3) Uniformly optimized approximations

In the flat case, |σflat1,opt(k)| = |σflat2,opt(k)| so that it made sense to look for optimized constant values of

type (Gander, SINUM 2006)

σflat1,OO0 = −σflat2,OO0 = p

In the cylindrical case |σcyl1,opt(k)| 6= |σcyl2,opt(k)|!

Ratio between the optimal interface symbols as a function of k. a = b = 0.5

η = 1 η = 100

The ratio between the optimal symbols is almost equal to 1 (apart when η, m and k are all small) →
It makes sense to look for optimized constant values of type

σcyl1,OO0 = −σcyl2,OO0 = p



3) Uniformly optimized approximations (cont’d)

Set

A (m, k) =
√
η + k2

I ′m

(
a
√
η + k2

)
Im

(
a
√
η + k2

), B (m, k) = −
√
η + k2

K ′m

(
a
√
η + k2

)
Km

(
a
√
η + k2

).
A− := A (mmin, kmin) , B− := B (mmin, kmin) ,

A+ := A (mmax, kmax) , B+ := B (mmax, kmax) ,

Theorem 1 Assume B− ≤ A+ and no overlap. If

popt =

√
A+B+ (A− + B−)− A−B− (A+ + B+)

A+ + B+ − A− −B−
,

then

ρ̄cylOO0 := min
p≥0

max
m∈[mmin,mmax]
k∈[kmin,k+]

ρcylOO0 (m, k, p) = ρcylOO0 (mmin, kmin, popt) = ρcylOO0 (mmax, kmax, popt) .

Note: The optimization has been performed for the function ρcylOO0 (m, k, p) which is not necessarily positive.

However, for the values considered in this work, the negative part featured always small absolute values



NUMERICAL RESULTS (Gigante, Pozzoli, V., Submitted)

Numerical experiments: No overlap, a = 0.5, L = 5, R = 1,

f = u = 0, Finite Element Library LIFEV (www.lifev.org),

Test 1: Cylindrical asymmetry (only m = 0 involved). Initial condition:
u0

2 =
1

e4

(
z2 − 2.5

6.25

)3

on Σ,

∂u0
2

∂n
= 0 on Σ.

σ/η 0.1 1 10

σflat1,T0(0, 0) 0.32 1.00 3.16

σflat2,T0(0, 0) -0.32 -1.00 -3.16

σcyl1,T0(0, 0) 0.98 1.79 4.06

σcyl2,T0(0, 0) -0.02 -0.24 -1.95

Values of the constant interface approximations

σ/η 0.1 1 10

σflatT0 (0, 0) 160 92 55

σcylT0(0, 0) 28 35 39
Number of iterations for different values of η by using the constant interface approximations



NUMERICAL RESULTS (cont’d)

σ1 σ2 num iter

σcylT0(0, 0) 1.79 -0.24 35

σcylT0(0, 1) 2.24 -0.47 35

σcylT0(0, 5) 6.03 -3.93 28

σcylT0(0, 10) 11.01 -8.98 21

σcylT0(0, 15) 16.00 -13.99 30

σcylT0(0, 30) 31.00 -29.00 58

σcylT0(0, 60) 61.00 -59.00 111

Values of the constant interface parameters (left) and number of iterations (right) for different values of k0.

m0 = 0.

p # iter

8.79 25

Number of iterations by using the optimized constant interface parameter

There exists an optimal value of k0 which guarantees the best convergence.
However, it is difficult to estimate it a priori→ Optimized constant parameter



NUMERICAL RESULTS (cont’d)

Test 2: Non-null localized angular frequency (m = 2).
Exact solution u = (x2 − y2)z, f = η u, initial condition u0

2 = 5(x2 − y2) sin(πz/5) on Σ,

∂u0
2

∂n
= 0 on Σ.

σ1 σ2 num iter

σ
cyl
T0 (0, 0) 1.79 -0.24 283

σ
cyl
T0 (2, 0) 4.22 -4.08 60

Values of the constant interface parameters (left) and number of iterations (right)

Big improvement if the constant parameters are evaluated for m0 = 2!



THE FLUID-STRUCTURE INTERACTION PROBLEM
(Gigante, V., In preparation)

We consider a fluid flowing in an elastic channel.

Simplified models:

- Incompressible, linear and non-viscous fluid

- Wave equation

Fluid domain: Ωf := {r < R,ϕ ∈ [0, 2π), z ∈ R}
Structure domain: Ωs := {r > R,ϕ ∈ [0, 2π), z ∈ R}



ρfδtu +∇cylp = 0 in Ωf ,

∇cyl · u = 0 in Ωf ,∫∞
−∞
∫ 2π

0 |ζ
j+1(r, ϕ, z)|dϕdz bounded as r → 0+, ζ = p,u,

ur = δtηr on Σ,

−pn = λ∇cylη n on Σ,

ηθ = ηz = 0 on Σ

ρsδttη − λ4cylη = 0 in Ωs,

η = 0 in {r →∞} ∪ {z = ±∞, r > R},

where δtw := w−wn

∆t , δttw := δtw−δtwn

∆t

Coupling conditions: Continuity of velocities and stresses



GENERALIZED SCHWARZ METHOD - FSI

Given u0, η0 and two linear operators Sf 6= Ss, solve for j ≥ 0 until convergence

1. Fluid problem
ρfδtu

j+1 +∇cylp
j+1 = 0 in Ωf ,

∇cyl · uj+1 = 0 in Ωf ,∫∞
−∞
∫ 2π

0 |ζ
j+1(r, ϕ, z)|dϕdz bounded as r → 0+, ζ = p,u,

Sf∆t δtu
j+1
r − pj+1 =

Sf
∆t

ηjr + λ ∂rη
j
r + F1(unr , η

n
r , η

n−1
r ) on Σ;

2. Structure problem
ρsδttη

j+1 − λ4cylη
j+1 = 0 in Ωs,

ηj+1 = 0 in {r →∞} ∪ {z = ±∞, r > R},
Ss
∆t

ηj+1
r + λ ∂rη

j+1
r = Ss∆t δtu

j+1
r − pj+1 + F2(unr , η

n
r , η

n−1
r ) on Σ,

ηj+1
θ = ηj+1

z = 0 on Σ

Proposition 5 The reduction factor of the previous iterations is given by

ρj(m, k) =

∣∣∣∣ σf Km(β R) + λ∆tβ K ′m(β R)

σsKm(β R) + λ∆tβ K ′m(β R)
· ρf Im(kR) + σs∆t k I

′
m(kR)

ρf Im(kR) + σf∆t k I ′m(kR)

∣∣∣∣ , β :=

√
k2 +

ρs
λ∆t2

.

For the Dirichlet-Neumann scheme, that is for σf →∞ and σs = 0, we obtain

ρDN(m, k) =

∣∣∣∣ ρfβ Km(β R)

λ∆tK ′m(β R)
· Im(kR)

∆t k I ′m(kR)

∣∣∣∣ .
→ slow or even no convergence for ρf ' ρs (high added mass effect)



OPTIMIZATION - FSI
(Gigante, V., In preparation)

The optimal values are given by

σoptf (m, k) = −λ∆tβK ′m (βR)

Km (βR)
> 0, σopts (m, k) = − ρfIm (kR)

∆tkI ′m (kR)
< 0

In this case |σf | 6= |σs| in general for any η, m and k

→ we can not anymore look for the same constant optimed parameter!

Idea: Look for two function σ̂f(p) and σ̂s(p) approximating the optimal values and depending only on

one parameter p

Exploiting the properties of the Bessel functions, we have(
R

λ∆t
σoptf (m, k)− 1

2

)2

−R2 ρs
λ∆t2

'
(
− R

∆t

1

σopts (m, k)
+

1

2

)2

By forcing that the latter is satisfied exactly, we obtain an approximated relationship between σ̂f and σ̂s
Setting σ̂s (p) = −p, we get

σ̂f (p) = λ

√(1

p
+

∆t

2R

)2

+
ρs
λ

+
∆t

2R

 .



OPTIMIZATION - FSI (cont’d)

The analysis to determine the optimal value of p is on going...

In the meantime we evaluated a possible optimized

value of p by drawing a plot of ρ

ρ vs k and p

Test FSI:

Fluid: Incompressible Navier-Stokes equations, Structure: Linear elasticity

a = 0.5, L = 5, ∆t = 0.001, Pin =

{
1000 t < 0.008

0 t ≥ 0.008
→ estimated p = 969 → σ̂f = 2762, σ̂s = −969

Hs 0.1 0.2 0.5 1.0

13.5 8.1 5.6 6.8
Number of iterations for different values of the structure thickness Hs by using the estimated optimized

constant parameter

t = 0.001 t = 0.004 t = 0.009 t = 0.013


