Local simplification of Darcy's equations with pressure dependent permeability

Christine Bernardi

Laboratoire Jacques-Louis Lions C.N.R.S. & Université Pierre et Marie Curie

Joint work with Étienne Ahusborde, Mejdi Azaïez and Faker Ben Belgacem Ω : bounded connected domain in \mathbb{R}^d , d = 2 or 3, with a Lipschitzcontinuous boundary $\partial \Omega$.

We consider a partition of its bounary :

$$\partial \Omega = \overline{\Gamma}_{(p)} \cup \overline{\Gamma}_{(f)}$$
 and $\Gamma_{(p)} \cap \Gamma_{(f)} = \emptyset$,

such that $\partial \Gamma_{(p)}$ and $\partial \Gamma_{(f)}$ are Lipschitz-continuous submanifolds of $\partial \Omega$.

The following nonlinear model was suggested by

K.R. Rajagopal

Where the pressure p presents high variations it is no longer possible to neglect the dependence of the permeability α of the medium with respect to p.

$$\begin{cases} \alpha(p) \mathbf{u} + \operatorname{grad} p = \mathbf{f} & \text{in } \Omega, \\ \operatorname{div} \mathbf{u} = 0 & \text{in } \Omega, \\ p = p_0 & \text{on } \Gamma_{(p)}, \\ \mathbf{u} \cdot \mathbf{n} = g & \text{on } \Gamma_{(f)}. \end{cases}$$

Unknowns : the velocity \mathbf{u} and the pressure p of the fluid.

Where the pressure p presents high variations it is no longer possible to neglect the dependence of the permeability α of the medium with respect to p. But these variations are negligible in a large part of the domain.

We consider a decomposition of the domain

 $\overline{\Omega} = \overline{\Omega}_{\sharp} \cup \overline{\Omega}_{\flat}$ and $\Omega_{\sharp} \cap \Omega_{\flat} = \emptyset$.

$\left(lpha(p^*) \mathbf{u}^* + \operatorname{grad} p^* = \mathbf{f} ight)$	in Ω _♯ ,
$\alpha_0 \mathbf{u}^* + \operatorname{grad} p^* = \mathbf{f}$	in Ω_{\flat} ,
$div \mathbf{u}^* = 0$	in Ω,
$p^* = p_0$	on Г _(p) ,
$\mathbf{u}^* \cdot \mathbf{n} = g$	on Γ _(f) .

How to optimize the choice of the decomposition?

- The full and simplified models
 - The discrete problem and its well-posedness
 - A posteriori analysis
 - Adaptivity strategy
 - An iterative algorithm
 - A numerical experiment

The full and simplified models

Assume that :

(i) $\Gamma_{(p)}$ has a positive (d-1)-measure in $\partial \Omega$;

(ii) The function α is a continuous function from \mathbb{R} into \mathbb{R} and satisfies for two positive constants α_1 and α_2 ,

$$\forall \xi \in I\!\!R, \quad \alpha_1 \leq \alpha(\xi) \leq \alpha_2.$$

$$H^{1}_{(p)}(\Omega) = \{ q \in H^{1}(\Omega); q = 0 \text{ on } \Gamma_{(p)} \}.$$

We consider the variational problem :

Find (\mathbf{u}, p) in $L^2(\Omega)^d \times H^1(\Omega)$ such that

$$p = p_0$$
 on $\Gamma_{(p)}$,

and

$$\forall \mathbf{v} \in L^2(\Omega)^d, \quad a^{[p]}(\mathbf{u}, \mathbf{v}) + b(\mathbf{v}, p) = \int_{\Omega} \mathbf{f}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x},$$
$$\forall q \in H^1_{(p)}(\Omega), \quad b(\mathbf{u}, q) = \langle g, q \rangle^{(f)},$$

where the bilinear forms $a^{[\xi]}(\cdot, \cdot)$ for any measurable function ξ on Ω and $b(\cdot, \cdot)$ are defined by

$$a^{[\xi]}(\mathbf{u},\mathbf{v}) = \int_{\Omega} \alpha(\xi(\mathbf{x})) \mathbf{u}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) d\mathbf{x}, \qquad b(\mathbf{v},q) = \int_{\Omega} \mathbf{v}(\mathbf{x}) \cdot (\operatorname{grad} q)(\mathbf{x}) d\mathbf{x}.$$

Here, $\langle \cdot, \cdot \rangle^{(f)}$ denotes the duality pairing between the dual space $H_{00}^{\frac{1}{2}}(\Gamma_{(f)})$
and $H_{00}^{\frac{1}{2}}(\Gamma_{(f)})$.

Proposition. Assume that $\mathcal{D}(\Omega \cup \Gamma_{(f)})$ is dense in $H^1_{(p)}(\Omega)$. For any data (\mathbf{f}, p_0, g) in $L^2(\Omega)^d \times H^{\frac{1}{2}}(\Gamma_{(p)}) \times H^{\frac{1}{2}}_{00}(\Gamma_{(f)})'$, the full model is equivalent to the previous variational problem, in the sense that any pair (\mathbf{u}, p) in $L^2(\Omega)^d \times H^1(\Omega)$ is a solution of the full model in the distribution sense if and only if it is a solution of the variational problem.

The existence of a solution requires some basic properties of the bilinear forms, first there continuity and also

$$\forall \mathbf{v} \in L^2(\Omega)^d, \quad a^{[\xi]}(\mathbf{v}, \mathbf{v}) \ge \alpha_1 \|\mathbf{v}\|_{L^2(\Omega)^d},$$
$$\forall q \in H^1_{(p)}(\Omega), \quad \sup_{\mathbf{v} \in L^2(\Omega)^d} \frac{b(\mathbf{v}, q)}{\|\mathbf{v}\|_{L^2(\Omega)^d}} \ge |q|_{H^1(\Omega)}.$$

The existence of a solution is established thanks to Brouwer's fixed point theorem combined with the addition of a penalization term.

Theorem. For any data (f, p_0, g) in $L^2(\Omega)^d \times H^{\frac{1}{2}}(\Gamma_{(p)}) \times H^{\frac{1}{2}}_{00}(\Gamma_{(f)})'$, the variational problem admits a solution (u, p) in $L^2(\Omega)^d \times H^1(\Omega)$. Moreover this solution satisfies

$$\|\mathbf{u}\|_{L^{2}(\Omega)^{d}} + \|p\|_{H^{1}(\Omega)} \leq c \left(\|\mathbf{f}\|_{L^{2}(\Omega)^{d}} + \|p_{0}\|_{H^{\frac{1}{2}}(\Gamma_{(p)})} + \|g\|_{H^{\frac{1}{2}}_{00}(\Gamma_{(f)})'}\right).$$

Assume now that the constant α_0 satisfies

 $\alpha_1 \leq \alpha_0 \leq \alpha_2.$

We define the function α^* on $\Omega \times I\!\!R$ by

$$\forall \xi \in I\!\!R, \quad \alpha^*(\mathbf{x}, \xi) = \begin{cases} \alpha(\xi) & \text{for a.e x in } \Omega_{\sharp}, \\ \alpha_0 & \text{for a.e x in } \Omega_{\flat}. \end{cases}$$

A new bilinear form is introduced

$$a^{*[\xi]}(\mathbf{u},\mathbf{v}) = \int_{\Omega} \alpha^{*}(\mathbf{x},\xi(\mathbf{x})) \mathbf{u}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) d\mathbf{x}.$$

We consider the "starred" variational problem :

Find (\mathbf{u}^*, p^*) in $L^2(\Omega)^d \times H^1(\Omega)$ such that

$$p^* = p_0 \quad \text{on } \Gamma_{(p)},$$

and

$$\forall \mathbf{v} \in L^2(\Omega)^d, \quad a^{*[p^*]}(\mathbf{u}^*, \mathbf{v}) + b(\mathbf{v}, p^*) = \int_{\Omega} \mathbf{f}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x},$$
$$\forall q \in H^1_{(p)}(\Omega), \quad b(\mathbf{u}^*, q) = \langle g, q \rangle^{(f)}.$$

Exactly the same arguments as previously lead to

Theorem. For any data (f, p_0, g) in $L^2(\Omega)^d \times H^{\frac{1}{2}}(\Gamma_{(p)}) \times H^{\frac{1}{2}}_{00}(\Gamma_{(f)})'$, the starred variational problem admits a solution (\mathbf{u}^*, p^*) in $L^2(\Omega)^d \times H^1(\Omega)$. Moreover this solution satisfies

$$\|\mathbf{u}^*\|_{L^2(\Omega)^d} + \|p^*\|_{H^1(\Omega)} \le c \left(\|\mathbf{f}\|_{L^2(\Omega)^d} + \|p_0\|_{H^{\frac{1}{2}}(\Gamma_{(p)})} + \|g\|_{H^{\frac{1}{2}}_{00}(\Gamma_{(f)})'} \right).$$

The links between the solutions (u, p) and (u^*, p^*) will be investigated later on.

The discrete problem and its well-posedness

We intend to work with a spectral element discretization.

So, we consider a partition of Ω without overlap into a finite number of rectangles (d = 2) or rectangular parallelepipeds (d = 3) with edges parallel to the coordinate axes :

$$\overline{\Omega} = \bigcup_{k=1}^{K} \overline{\Omega}_k$$
 and $\Omega_k \cap \Omega_{k'} = \emptyset$, $1 \le k < k' \le K$

We assume moreover that

(i) both $\overline{\Gamma}_{(p)}$ and $\overline{\Gamma}_{(f)}$ are the union of whole edges (d = 2) or faces (d = 3) of elements Ω_k ,

(ii) the intersection of the boundaries of two subdomains, if not empty, is a vertex, a whole edge or a whole face,

(iii) each Ω_k is contained either in Ω_b or in Ω_{\sharp} .

The discrete spaces

For each nonnegative integer n, $\mathbb{P}_n(\Omega_k)$ stands for the space of restrictions to Ω_k of polynomials with d variables and degree with respect to each variable $\leq n$.

$$\mathbb{X}_{N} = \left\{ v_{N} \in L^{2}(\Omega)^{d}; \ v_{N}|_{\Omega_{k}} \in \mathbb{P}_{N}(\Omega_{k})^{d}, \ 1 \leq k \leq K \right\},$$
$$\mathbb{M}_{N} = \left\{ q_{N} \in H^{1}(\Omega); \ q_{N}|_{\Omega_{k}} \in \mathbb{P}_{N}(\Omega_{k}), \ 1 \leq k \leq K \right\},$$

and also

$$\mathbb{M}_N^{(p)} = \mathbb{M}_N \cap H^1_{(p)}(\Omega).$$

The quadrature formulas

Gauss-Lobatto formula : There exist a unique set of N + 1 nodes ξ_j , $0 \le j \le N$, with $\xi_0 = -1$ and $\xi_N = 1$, and a unique set of N + 1 weights ρ_j , $0 \le j \le N$, such that

$$\forall \Phi \in I\!\!P_{2N-1}(-1,1), \quad \int_{-1}^{1} \Phi(\zeta) \, d\zeta = \sum_{j=0}^{N} \Phi(\xi_j) \, \rho_j.$$

Denoting by F_k one of the affine mappings that send the square or cube $]-1,1[^d$ onto Ω_k , we define a discrete product on all continuous functions u and v on $\overline{\Omega}_k$ as follows : In dimension d = 2 for instance

$$(u,v)_N^k = \frac{\operatorname{meas}(\Omega_k)}{4} \sum_{i=0}^N \sum_{j=0}^N u \circ F_k(\xi_i,\xi_j) v \circ F_k(\xi_i,\xi_j) \rho_i \rho_j$$

This leads to a general discrete product

$$((u, v))_N = \sum_{k=1}^K (u, v)_N^k.$$

 \mathcal{I}_N : interpolation operator at all nodes $F_k(\xi_i, \xi_j)$ with values in \mathbb{M}_N .

Similarly, on each edge or face Γ_{ℓ} of the Ω_k , assuming for instance that the mapping F_k maps $\{-1\}\times] - 1, 1[^{d-1}$ onto Γ_{ℓ} , we define a discrete product : In dimension d = 2 for instance,

$$(u,v)_N^{\Gamma_\ell} = \frac{\operatorname{meas}(\Gamma_\ell)}{2} \sum_{j=0}^N u \circ F_k(\xi_0,\xi_j) v \circ F_k(\xi_0,\xi_j) \rho_j.$$

A global product on $\Gamma_{(f)}$ is then defined by

$$((u,v))_N^{(f)} = \sum_{\ell \in \mathcal{L}_{(f)}} (u,v)_N^{\Gamma_\ell},$$

where $\mathcal{L}_{(f)}$ stands for the set of indices ℓ such that Γ_{ℓ} is contained in $\Gamma_{(f)}$.

Finally, assuming that p_0 is continuous on $\overline{\Gamma}_{(p)}$, for each edge (d = 2)or face $(d = 3) \Gamma_{\ell}$ of an element Ω_k which is contained in $\Gamma_{(p)}$, $p_{0N}|_{\Gamma_{\ell}}$ belongs to $\mathbb{P}_N(\Gamma_{\ell})$ and is equal to p_0 at the $(N+1)^{d-1}$ nodes $F_k(\xi_i, \xi_j)$ or $F_k(\xi_i, \xi_j, \xi_m)$ which are located on $\overline{\Gamma}_{\ell}$.

We denote by $i_N^{(p)}$ the corresponding interpolation operator.

We assume that all data f, p_0 and g are continuous where needed. The discrete problem reads

Find (\mathbf{u}_N, p_N) in $\mathbb{X}_N \times \mathbb{M}_N$ such that

$$p_N = p_{0N}$$
 on $\Gamma_{(p)}$,

and

$$\forall \mathbf{v}_N \in \mathbb{X}_N, \quad a_N^{*[p_N]}(\mathbf{u}_N, \mathbf{v}_N) + b_N(\mathbf{v}_N, p_N) = ((\mathbf{f}, \mathbf{v}_N))_N, \\ \forall q_N \in \mathbb{M}_N^{(p)}, \quad b_N(\mathbf{u}_N, q_N) = ((g, q_N))_N^{(f)},$$

where the bilinear forms $a_N^{*[\xi]}(\cdot, \cdot)$ for any continuous function ξ on $\overline{\Omega}$ and $b_N(\cdot, \cdot)$ are defined by

$$a_N^{*[\xi]}(\mathbf{u},\mathbf{v}) = ((\alpha^*(\cdot,\xi)\mathbf{u},\mathbf{v}))_N, \qquad b_N(\mathbf{v},q) = ((\mathbf{v},\operatorname{grad} q))_N.$$

As now standard, the well-posedness of this problem and a priori error estimates are now deduced from the theorem due to F. Brezzi, J. Rappaz, P.-A. Raviart

This approach requires the stability and optimal a priori error estimates for the linear problem (i.e., when $\Omega_{b} = \Omega$) which are known for a long time.

Theorem, Part I. Assume that

(i) the coefficient α is of class C^2 on \mathbb{R} with bounded derivatives; (ii) the solution $U^* = (\mathbf{u}^*, p^*)$ of the simplified problem belongs to $H^s(\Omega)^d \times H^{s+1}(\Omega)$ for some s > 0 in dimension d = 2 and s > 1 in dimension d = 3;

(iii) the solution $U^* = (\mathbf{u}^*, p^*)$ of the simplified problem is nonsingular; (iv) the data (\mathbf{f}, p_0, g) belong to $H^{\sigma}(\Omega)^d \times H^{\sigma + \frac{1}{2}}(\Gamma_{(p)}) \times H^{\sigma}(\Gamma_{(f)}), \sigma > \frac{d}{2}$.

There exist a positive integer N^* and a positive constant ρ such that, for $N \ge N^*$, the discrete problem has a unique solution (\mathbf{u}_N, p_N) in the ball with centre (\mathbf{u}^*, p^*) and radius $\rho \mu(N)^{-1}$, with $\mu(N)$ equal to $|\log N|^{\frac{1}{2}}$ in dimension d = 2 and to N in dimension d = 3. Theorem, Part II. Moreover this solution satisfies the following a priori error estimate

$$\begin{aligned} \|\mathbf{u}^{*} - \mathbf{u}_{N}\|_{L^{2}(\Omega)^{d}} + \|p^{*} - p_{N}\|_{H^{1}(\Omega)} \\ &\leq c(\mathbf{u}^{*}, p^{*}) \left(N^{-s} \left(\|\mathbf{u}^{*}\|_{H^{s}(\Omega)^{d}} + \|p^{*}\|_{H^{s+1}(\Omega)} \right) \\ &+ N^{-\sigma} \left(\|\mathbf{f}\|_{H^{\sigma}(\Omega)^{d}} + \|p_{0}\|_{H^{\sigma+\frac{1}{2}}(\Gamma_{(p)})} + \|g\|_{H^{\sigma}(\Gamma_{(f)})} \right) \right), \end{aligned}$$

where the constant $c(\mathbf{u}^*, p^*)$ only depends on the solution (\mathbf{u}^*, p^*) .

A posteriori analysis

As now standard for multistep discretizations, the a posteriori analysis that we perform relies on the triangle inequalities

$$\|\mathbf{u} - \mathbf{u}_N\|_{L^2(\Omega)^d} \le \|\mathbf{u} - \mathbf{u}^*\|_{L^2(\Omega)^d} + \|\mathbf{u}^* - \mathbf{u}_N\|_{L^2(\Omega)^d},$$
$$\|p - p_N\|_{H^1(\Omega)} \le \|p - p^*\|_{H^1(\Omega)} + \|p^* - p_N\|_{H^1(\Omega)}.$$

Indeed, we wish to uncouple as much as possible the errors issued from the simplification and the discretization.

Error due to the simplification of the model

On each domain Ω_k , $1 \le k \le K$, the error indicator is defined by $\eta_{N,k}^{(s)} = \| (\alpha(p_N) - \alpha^*(\cdot, p_N)) \mathbf{u}_N \|_{L^2(\Omega_k)^d}.$

It can be noted that all $\eta_{N,k}^{(s)}$ such that Ω_k is contained in Ω_{\sharp} are zero. Otherwise, they are given by

$$\eta_{N,k}^{(s)} = \| \left(\alpha(p_N) - \alpha_0 \right) \mathbf{u}_N \|_{L^2(\Omega_k)^d}.$$

In all cases, computing them is easy.

J. Pousin, J. Rappaz

Proposition. If the solution $U = (\mathbf{u}, p)$ of the continuous problem

(i) belongs to $H^{s}(\Omega)^{d} \times H^{s+1}(\Omega)$ for some s > 0 in dimension d = 2 and $s > \frac{1}{2}$ in dimension d = 3;

(ii) is nonsingular,

there exists a neighbourhood of U in $H^s(\Omega)^d \times H^{s+1}(\Omega)$ such that the following a posteriori error estimate holds for any solution $U^* = (\mathbf{u}^*, p^*)$ of the simplified problem in this neighbourhood

$$\begin{aligned} \|\mathbf{u} - \mathbf{u}^*\|_{L^2(\Omega)^d} + \|p - p^*\|_{H^1(\Omega)} \\ &\leq c(\mathbf{u}, p) \left(\left(\sum_{k=1}^K (\eta_{N,k}^{(s)})^2 \right)^{\frac{1}{2}} + \|\mathbf{u}^* - \mathbf{u}_N\|_{L^2(\Omega)^d} + \|p^* - p_N\|_{H^1(\Omega)} \right), \end{aligned}$$

where the constant $c(\mathbf{u}, p)$ only depends on the solution U.

First estimate of the error due to the simplification !

The residual equation can be written explicitly. It reads

$$\begin{aligned} \forall \mathbf{v} \in L^2(\Omega)^d, \quad a^{[p]}(\mathbf{u} - \mathbf{u}^*, \mathbf{v}) + b(\mathbf{v}, p - p^*) \\ &= -\int_{\Omega} \Big(\alpha(p) - \alpha^*(\mathbf{x}, p^*) \Big) \mathbf{u}^*(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \, \mathbf{x}, \\ \forall q \in H^1_{(p)}(\Omega), \quad b(\mathbf{u} - \mathbf{u}^*, q) = 0. \end{aligned}$$

This leads to the next result.

Proposition. If the previous assumptions hold, the following estimate holds for each indicator $\eta_{N,k}^{(s)}$

$$\eta_{N,k}^{(s)} \le c \left(\|\mathbf{u} - \mathbf{u}^*\|_{L^2(\Omega_k)^d} + \|p - p^*\|_{H^1(\Omega_k)} + \|\mathbf{u}^* - \mathbf{u}_N\|_{L^2(\Omega_k)^d} + \|p^* - p_N\|_{H^1(\Omega_k)} \right).$$

Error due to the discretization

Some further notation : For $1 \le k \le K$, let \mathcal{E}_k^0 and $\mathcal{E}_k^{(f)}$ be the set of edges (d = 2) or faces (d = 3) of Ω_k which are not contained in $\partial \Omega$ or are contained in $\overline{\Gamma}_{(f)}$, respectively.

We also introduce an approximation g_N of g: Assuming that g is continuous on $\overline{\Gamma}_{(f)}$, for each edge (d = 2) or face (d = 3) Γ_{ℓ} of an element Ω_k which is contained in $\Gamma_{(f)}$, $g_N|_{\Gamma_{\ell}}$ belongs to $\mathbb{P}_N(\Gamma_{\ell})$ and is equal to g at the $(N+1)^{d-1}$ nodes $F_k(\xi_i, \xi_j)$ or $F_k(\xi_i, \xi_j, \xi_m)$ which are located on $\overline{\Gamma}_{\ell}$.

On each domain Ω_k , $1 \le k \le K$, the error indicator is defined by

$$\eta_{N,k}^{(d)} = \|\mathcal{I}_{N}\mathbf{f} - \alpha^{*}(\cdot, p_{N})\mathbf{u}_{N} - \operatorname{\mathbf{grad}} p_{N}\|_{L^{2}(\Omega_{k})^{d}} + N^{-1} \|\operatorname{div} \mathbf{u}_{N}\|_{L^{2}(\Omega_{k})} + \sum_{\gamma \in \mathcal{E}_{k}^{0}} N^{-\frac{1}{2}} \|[\mathbf{u}_{N} \cdot \mathbf{n}]_{\gamma}\|_{L^{2}(\gamma)} + \sum_{\gamma \in \mathcal{E}_{k}^{(f)}} N^{-\frac{1}{2}} \|g_{N} - \mathbf{u}_{N} \cdot \mathbf{n}\|_{L^{2}(\gamma)}.$$

The residual equations read, for all v in $L^2(\Omega)^d$,

$$a^{*[p^*]}(\mathbf{u}^*, \mathbf{v}) - a^{*[p_N]}(\mathbf{u}_N, \mathbf{v}) + b(\mathbf{v}, p^* - p_N) = \int_{\Omega} (\mathcal{I}_N \mathbf{f} - lpha^*(\mathbf{x}, p_N) \mathbf{u}_N - \operatorname{grad} p_N)(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \, \mathbf{\dot{x}} + \int_{\Omega} (\mathbf{f} - \mathcal{I}_N \mathbf{f})(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \, \mathbf{\dot{x}},$$

and, for all q in $H^1_{(p)}(\Omega)$,

$$b(\mathbf{u}^* - \mathbf{u}_N, q) = \langle g, q \rangle^{(f)} - b(\mathbf{u}_N, q).$$

A further integration by parts is necessary to handle this last equation

$$b(\mathbf{u}^* - \mathbf{u}_N, q) = \langle g - g_N, q \rangle^{(f)} + \langle g_N, q - q_N \rangle^{(f)} + \sum_{k=1}^K \left(\int_{\Omega_k} (\operatorname{div} \mathbf{u}_N)(\mathbf{x})(q - q_N)(\mathbf{x}) \, d\mathbf{x} - \int_{\partial\Omega_k} (\mathbf{u}_N \cdot \mathbf{n})(\tau)(q - q_N)(\tau) \, d\tau \right).$$

Let $\rho(\Omega)$ be equal to 1 if the domain Ω is either two-dimensional or convex, to $N^{\frac{1}{2}}$ otherwise.

J. Pousin, J. Rappaz

Proposition. If the solution $U^* = (\mathbf{u}^*, p^*)$ of the simplified problem (i) belongs to $H^s(\Omega)^d \times H^{s+1}(\Omega)$ for some s > 0 in dimension d = 2 and $s > \frac{1}{2}$ in dimension d = 3; (ii) is nonsingular,

there exists a neighbourhood of U^* such that the following a posteriori error estimate holds for any solution $U_N = (\mathbf{u}_N, p_N)$ of the discrete problem in this neighbourhood

$$\begin{aligned} \|\mathbf{u}^{*} - \mathbf{u}_{N}\|_{L^{2}(\Omega)^{d}} + \|p^{*} - p_{N}\|_{H^{1}(\Omega)} &\leq c(\mathbf{u}^{*}, p^{*}) \left(\rho(\Omega) \left(\sum_{k=1}^{K} (\eta_{N,k}^{(d)})^{2}\right)^{\frac{1}{2}} \\ &+ \|\mathbf{f} - \mathcal{I}_{N}\mathbf{f}\|_{L^{2}(\Omega)^{d}} + \|p_{0} - p_{0N}\|_{H^{\frac{1}{2}}(\Gamma_{(p)})} + \|g - g_{N}\|_{H^{\frac{1}{2}}_{00}(\Gamma_{(f)})'}\right), \end{aligned}$$

where the constant $c(\mathbf{u}^*, p^*)$ only depends on the solution U^* .

Summary of the results

Up to the terms involving the data, namely

$$\|\mathbf{f} - \mathcal{I}_N \mathbf{f}\|_{L^2(\Omega)^d} + \|p_0 - p_{0N}\|_{H^{\frac{1}{2}}(\Gamma_{(p)})} + \|g - g_N\|_{H^{\frac{1}{2}}_{00}(\Gamma_{(f)})'}$$

the full error

 $E = \|\mathbf{u} - \mathbf{u}^*\|_{L^2(\Omega)^d} + \|p - p^*\|_{H^1(\Omega)} + \|\mathbf{u}^* - \mathbf{u}_N\|_{L^2(\Omega)^d} + \|p^* - p_N\|_{H^1(\Omega)},$ satisfies

$$E \le c \left(\sum_{k=1}^{K} \left((\eta_{N,k}^{(s)})^2 + \rho(\Omega)^2 (\eta_{N,k}^{(d)})^2 \right) \right)^{\frac{1}{2}}.$$

This estimate is fully optimal when the domain Ω is two-dimensional or convex. Moreover, for three-dimensional non-convex domains Ω , the lack of optimality only concerns the terms $\|\operatorname{div} \mathbf{u}_N\|_{L^2(\Omega_L)}$.

The indicators $\eta_{N,k}^{(s)}$ seem to form an efficient tool for the automatic simplification of the model, as described in the following strategy.

Adaptivity strategy

Let η^* be a fixed tolerance.

From now on, we work with N sufficiently large for the quantities linked to the data to be smaller than η^* .

Initialization step. We first work with the partition of Ω given by

$$\Omega^0_\sharp = \emptyset, \qquad \Omega^0_\flat = \Omega,$$

and we solve the corresponding linear problem.

Adaptation step. Assuming that a partition of Ω into Ω_{\sharp}^{m} and Ω_{\flat}^{m} is given, we compute the corresponding solution (\mathbf{u}_{N}, p_{N}) of the discrete problem, the indicators $\eta_{N,k}^{(s)}$ and their mean value $\overline{\eta}_{N}^{(s)}$, the indicators $\eta_{N,k}^{(d)}$ and their mean value $\overline{\eta}_{N}^{(s)}$. The new partition of Ω is thus constructed in the following way :

(i) The domain Ω_{\sharp}^{m+1} is the union of Ω_{\sharp}^{m} and of all Ω_{k} such that $\eta_{N,k}^{(s)} \ge \max{\{\overline{\eta}_{N}^{(s)}, \overline{\eta}_{N}^{(d)}\}};$

(ii) The domain Ω_{\flat}^{m+1} is taken equal to $\Omega \setminus \overline{\Omega}_{\sharp}^{m+1}$.

The adaptation step must be iterated either a fixed number of times or until the Hilbertian sum $\left(\sum_{k=1}^{K} (\eta_{N,k}^{(s)})^2\right)^{\frac{1}{2}}$ becomes smaller than η^* (when possible).

There is no proof of convergence of the partition of Ω into Ω^m_{\sharp} and Ω^m_{\flat} .

An iterative algorithm

Assuming that an initial guess (\mathbf{u}_N^0,p_N^0) is given, we solve iteratively the problems

Find (\mathbf{u}_N^n, p_N^n) in $\mathbb{X}_N \times \mathbb{M}_N$ such that

$$p_N^n = p_{0N} \quad \text{on } \Gamma_{(p)},$$

and

$$\forall \mathbf{v}_N \in \mathbb{X}_N, \quad a_N^{*[p_N^{n-1}]}(\mathbf{u}_N^n, \mathbf{v}_N) + b_N(\mathbf{v}_N, p_N^n) = ((\mathbf{f}, \mathbf{v}_N))_N, \\ \forall q_N \in \mathbb{M}_N^{(p)}, \quad b_N(\mathbf{u}_N^n, q_N) = ((g, q_N))_N^{(f)}.$$

It is readiy checked that there exists a constant λ only depending on U^* such that any solution (\mathbf{u}_N, p_N) of the discrete problem satisfies

 $\|\mathbf{u}_N\|_{L^{\rho}(\Omega)^d} \le \lambda,$

with $\rho > 2$ in dimension d = 2 and $\rho = 3$ in dimension d = 3.

Proposition. When all previous assumptions hold, there exists a positive constant c_0 independent of N such that, if

$$\lambda \alpha^{\dagger} (1 + \frac{\alpha_2}{\alpha_1}) < c_0,$$

the sequence $(\mathbf{u}_N^n, p_N^n)_n$ converges to (\mathbf{u}_N, p_N) in $H^1(\Omega)^d \times L^2(\Omega)$. Moreover, the following estimate holds with $\kappa = \lambda \alpha^{\dagger} (1 + \frac{\alpha_2}{\alpha_1}) c_0^{-1}$,

$$\|\mathbf{u}_N - \mathbf{u}_N^n\|_{L^2(\Omega)^d} \le c \frac{\lambda \alpha^{\dagger}}{\alpha_1} \kappa^{n-1}, \qquad \|p_N - p_N^n\|_{H^1(\Omega)} \le \kappa^n.$$

A posteriori analysis

L. El Alaoui, A. Ern, M. Vohralík

In each domain Ω_k , $1 \le k \le K$, we define the error indicator

$$\eta_{N,k,n}^{(ia)} = \|\mathcal{I}_N(\alpha^*(\cdot, p_N^n) - \alpha^*(\cdot, p_N^{n-1}))\mathbf{u}_N^n\|_{L^2(\Omega_k)^d}.$$

Here also, all $\eta_{N,k,n}^{(ia)}$ such that Ω_k is contained in Ω_{\flat} are zero.

Proposition. When all previous assumptions holds, there exists a constant ν such that the following a posteriori error estimate holds for any solution $U_N^n = (\mathbf{u}_N^n, p_N^n)$ in the ball with centre U_N and radius $\nu \mu(N)^{-1}$,

$$\|\mathbf{u}_N - \mathbf{u}_N^n\|_{L^2(\Omega)^d} + \|p_N - p_N^n\|_{H^1(\Omega)} \le c \left(\sum_{k=1}^K (\eta_{N,k,n}^{(ia)})^2\right)^{\frac{1}{2}}.$$

where the constant c is independent of N.

An upper bound for each $\eta_{N,k,n}^{(ia)}$ can also be proven.

The error indicators provide the appropriate tool for stopping the iterative algorithm at the right step. Moreover this algorithm can be applied on Ω_{b} only one step over ? ?.

A numerical experiment

We work on the domain

$$\Omega =]-1, 1[^2, \qquad \Gamma_{(p)} = \{-1\} \times]-1, 1[, \qquad \Gamma_{(f)} = \partial \Omega \setminus \overline{\Gamma}_{(p)}.$$

The function α is equal to

$$\alpha(\xi) = \exp(\xi),$$

truncated at $\alpha_1 = \frac{3}{4}$ and $\alpha_2 = 3$.

We consider the given solution

$$\mathbf{u}(x,y) = \left(\sin(x)\,\cos(y), -\cos(x)\,\sin(y)\right),$$
$$p(x,y) = \exp\left(-\frac{(x+1)^2 + (y+1)^2}{0.05}\right).$$

The fact that the pressure presents high variations only on a part of the domain seems well appropriate for studying a possible simplification of the problem.

The pressure

The discretization is performed with low degree polynomials : N = 4but many elements : $K = 324 = 18^2$ equal squares.

We follow the previous adaptivity strategy procedure with $\eta^* = 10^{-8}$.

The convergence is obtained for m = 9, which proves the efficiency of our strategy.

It can be noted that Ω^9_{\sharp} contains 22 elements.

The successive partitions of Ω into Ω_{\sharp} and Ω_{\flat}

The isovalues of the final function α^{\ast}

Interest of the simplification

The iterative algorithm is performed as follows : Each iteration is applied on Ω_{\sharp} and only one iteration over 4 is applied on the whole domain.

	Without simplification	With simplification
Number of iterations	7	9
CPU time(s)	4.32	1.06

Comparison of the discretizations with and without simplification

Thank you for your attention