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€2 : bounded connected domain in ]Rd, d = 2 or 3, with a Lipschitz-
continuous boundary 0f2.
We consider a partition of its bounary :

082 = F(p) U F(f) and I‘(p) M I‘(f) = @,

such that 8I‘(p) and 8I‘(f) are Lipschitz-continuous submanifolds of 0f2.

T he following nonlinear model was suggested by
K.R. Rajagopal



Where the pressure p presents high variations it is no longer possible
to neglect the dependence of the permeability o of the medium with
respect to p.

(oz(p)u—l—gradpz f in Q,
divu = 0 in Q.
<

P = po onl ,,
\U. -n=gqg on I_(f)

Unknowns : the velocity u and the pressure p of the fluid.



Where the pressure p presents high variations it is no longer possible
to neglect the dependence of the permeability o« of the medium with
respect to p. But these variations are negligible in a large part of the
domain.

We consider a decomposition of the domain

ﬁzﬁﬁUQb and QﬁﬂQb:(b.



(a(p*) u* + gradp* = f

apu® 4+ gradp* =1f

divu* =0
p* = po
u*-n=gy

In €2,
in €2,
in <2,
on I_(p),

on I’(f)



How to optimize the choice of the decomposition ?

e The full and simplified models

e T he discrete problem and its well-posedness

e A posteriori analysis

e Adaptivity strategy

e An iterative algorithim

e A numerical experiment



The full and simplified models



Assume that :
(i) ) has a positive (d — 1)-measure in 0%2;

(ii) The function « is a continuous function from IR into IR and satisfies
for two positive constants o7 and a»,

vEe R, a1 <af) <a.

HE () = {q c HY(Q); ¢=0 on r(p)}.



We consider the variational problem :

Find (u,p) in L2(Q)% x HY(Q) such that

p=po oOnl,,

and
wv € L2, alPl(u,v) + b(v,p) = /Q F(x) - v(x) dx,

where the bilinear forms al¢l(-,-) for any measurable function ¢ on Q
and b(-,-) are defined by

a[g](u,v) = /Qoz(ﬁ(x)) u(x) - v(x) dx, b(v,q) = /QV(X) . (grad q) (x) dx.

1
Here, (-,-){/) denotes the duality pairing between the dual space HZ, (I ()’
1
and Hgo(M(f))-



Proposition. Assume that D(QQ U I‘(f)) Is dense in H(lp)(Q). For any data

(f,po, g) in L2(Q)% x H%(I‘(p)) X Héo(l‘(f))’, the full model is equivalent to
the previous variational problem, in the sense that any pair (u,p) in
L2(Q)4 x HI(Q) is a solution of the full model in the distribution sense
iIf and only if it is a solution of the variational problem.

T he existence of a solution requires some basic properties of the bilinear
forms, first there continuity and also

v e L2 afl(v,v) > a1 IVl 20y

b(v,q)
Vq € H} (Q2), sup > |q .
(p) ver2(Q)d ||V||L2(Q)d | |H1(Q)




The existence of a solution is established thanks to Brouwer’s fixed
point theorem combined with the addition of a penalization term.

1 1
Theorem. For any data (f,pg,g) in L?(Q)% x H2(I(,)) x HZy(F(s)), the
variational problem admits a solution (u,p) in L2(2)%x H1(Q). Moreover
this solution satisfies

Il 2y + Ipliey < e (Il +livoll g - Hlol 5 )
() () () () oy



Assume now that the constant g satisfies

a; < ag < ao.

We define the function a* on 2 x IR by

a(€) for a.e x in €2,
aQ for a.e x In €2,.

VEe R, of(x,8) = {

A new Dbilinear form is introduced

a*El(u, v) = /Q o (x,6(0) ) u(x) - v(x) dx.



We consider the ‘“‘starred” variational problem :

Find (u*,p*) in L2(Q)% x H1(Q) such that
p*=po ONT(,,
and
we L) @Bl v) +u(vp) = | () - v(x) dx,
Vg € Hly(Q),  bu*,q) = (g,9))).



Exactly the same arguments as previously lead to

1 1
Theorem. For any data (f,pg,g) in L?(2)? x H2((,)) x H3,(F(s)), the
starred variational problem admits a solution (u*,p*) in L2(Q)% x H1(Q).
Moreover this solution satisfies

0l 2y + 77y < ¢ (I8l p2gye + lIpoll 3~ +lgl 3 ).
L2(2) H1($) L2(2)¢ 3 ) Ho%o('_(f))’

The links between the solutions (u,p) and (u*, p*) will be investigated
later on.



T he discrete problem and its well-posedness



We intend to work with a spectral element discretization.

S0, we consider a partition of 2 without overlap into a finite number
of rectangles (d = 2) or rectangular parallelepipeds (d = 3) with edges
parallel to the coordinate axes :

K
Q= Uﬁk and QkﬂQk/:@, 1§k<k,§K.
k=1

We assume moreover that

(i) both F(p) and F(ﬂ are the union of whole edges (d = 2) or faces
(d = 3) of elements 2,

(ii) the intersection of the boundaries of two subdomains, if not empty,
IS a vertex, a whole edge or a whole face,

(iii) each €, is contained either in 2, or in .



T he discrete spaces

For each nonnegative integer n, IP,(€2;) stands for the space of restric-
tions to 2, of polynomials with d variables and degree with respect to
each variable < n.

XN = {’UN e L2(D)% vnlg, € PN(Q)% 1<k < K},
My = {qn € H(Q); anla, € Pn(Q), 1 <k < K},
and also

M =My N HE ().



T he quadrature formulas

Gauss—Lobatto formula : There exist a unique set of N 4+ 1 nodes ¢,
0<j3<N, with £, = —1 and &y = 1, and a unique set of N + 1 weights
pj» 0 <7 < N, such that

1 N
v e Poy 1(-1,1), [ ®(Qdc= Y (&) p;
. 2

Denoting by Fj,. one of the affine mappings that send the square or
cube | — 1,1[¢ onto €, we define a discrete product on all continuous
functions v and v on ;. as follows : In dimension d = 2 for instance

meas($2;)
4

N N
> > wo Fi(&,&5)vo Fip(&,€5) pip;j-

i=0 j=0

(u, v)lf\f =

This leads to a general discrete product

K
(w, )N = Y (w,0)R
k=1



In : interpolation operator at all nodes Fy(¢;,¢;) with values in My.

Similarly, on each edge or face [, of the (2;, assuming for instance that

the mapping F, maps {—1}x] — 1,1[%"1 onto ), we define a discrete
product : In dimension d = 2 for instance,

-y N
(ww)y =TS o Fieo. €0 0 Fuleo. ) o
i=0

A global product on I‘(f) Is then defined by

(o) = 3 (o),

EEﬁ(f)

where L,y stands for the set of indices ¢ such that I, is contained in
-



Finally, assuming that pg is continuous on F(p), for each edge (d = 2)
or face (d = 3) Iy of an element ; which is contained in "y, pon|r,
belongs to Py(I,) and is equal to py at the (N 4+ 1)4~1 nodes F(¢;,¢))
or F(&i,&;,ém) which are located on [I,.

We denote by z'%)) the corresponding interpolation operator.



We assume that all data f, pg and g are continuous where needed. The
discrete problem reads

Find (U_N,pN) in Xp X My such that

PN =poN ONT (),

and

vy € Xy, o\ PV (uy,va) F v pn) = (B V)N,
vav € MP, by (uy, ay) = (g, an) D,

where the bilinear forms a}k\;ﬂ(-,-) for any continuous function ¢ on Q
and by(-,-) are defined by

a3, v) = (@ COuV)N,  by(v,q) = (v.grad @)y



ASs now standard, the well-posedness of this problem and a priori error
estimates are now deduced from the theorem due to
F. Brezzi, J. Rappaz, P.-A. Raviart

This approach requires the stability and optimal a priori error estimates
for the linear problem (i.e., when Q, = 2) which are known for a long
time.



Theorem, Part I. Assume that

(i) the coefficient « is of class C2 on IR with bounded derivatives ;

(ii) the solution U* = (u*,p*) of the simplified problem belongs to
H3(Q) x H5T1(QQ) for some s > 0 in dimension d = 2 and s > 1 in di-
mension d = 3;

(iii) the solution U* = (u*, p*) of the simplified problem is nonsingular ;
(iv) the data (f,pg, g) belong to HO(Q) x HTT2((,) x H(F (), o > L.

There exist a positive integer N* and a positive constant p such that,
for N > N*, the discrete problem has a unique solution (up,py) In the
ball with centre (u*,p*) and radius pu(N)~1, with x(N) equal to |log N|%
in dimension d =2 and to N Iin dimension d = 3.



Theorem, Part II. Moreover this solution satisfies the following a priori
error estimate

lu* = unll 2y + 19" — Pl grace

< o0, p*) (N2 (10l oy + 19" i )
+ N7 (Il oy + ol oy ol ) )

where the constant c(u*, p*) only depends on the solution (u*,p*).



A posteriori analysis



As now standard for multistep discretizations, the a posteriori analysis
that we perform relies on the triangle inequalities

v —upnllp2(q)e < [la—u'f| 2y + [0 —unl2(qya

lp —pnllgiq) < llp—p'llgiq) + lIP" — el o)

Indeed, we wish to uncouple as much as possible the errors issued from
the simplification and the discretization.



Error due to the simplification of the model

On each domain 2, 1 <k < K, the error indicator is defined by

1%k = ll(a(on) = o*C,on) Junll 2 (g, e

It can be noted that all 77](\‘;),{ such that €2, is contained in €2; are zero.
Otherwise, they are given by

i = Il (a(pn) — ao)unl 2(q,ya-

In all cases, computing them is easy.



J. Pousin, J. Rappaz

Proposition. If the solution U = (u,p) of the continuous problem

(i) belongs to H*(Q)% x H5T1(Q) for some s > 0 in dimension d = 2 and
s > % in dimension d = 3,

(ii) is nonsingular,

there exists a neighbourhood of U in H5(Q)4 x HST1(Q) such that the
following a posteriori error estimate holds for any solution U* = (u*, p*)
of the simplified problem in this neighbourhood

lu —u*ll 2(q)a + |Ip - p*llﬂl(sz)
< c(u,p) (( Z (77(8) ) -+ ||u* — uN||L2(Q)d + ||p>|< _pN||H1(Q))7

where the constant c(u,p) only depends on the solution U.

First estimate of the error due to the simplification!



The residual equation can be written explicitly. It reads
v e L2(Q)%,  alPl(u—u*,v) + b(v,p — p*)
= — |_(a(®) = a"(x,p"))u" () - V(0%
Vg € H( (R), b(u—u*gq)=0.

This leads to the next result.

Proposition. If the previous assumptions hold, the following estimate
holds for each indicator n(s)

1ok < e (I =u"ll 2y 1P =l ) I =l 2y P~ Pl ey )



Error due to the discretization

Some further notation : For 1 < k < K, let &) and Slgf) be the set of
edges (d = 2) or faces (d = 3) of 2, which are not contained in 92 or
are contained in F(f), respectively.

We also introduce an approximation g, of g : Assuming that g is conti-
nuous on F(f), for each edge (d = 2) or face (d = 3) I, of an element
€2, which is contained in I" (), gy|r, belongs to IPx(Ip) and is equal to g
at the (N +1)4-1 nodes F.(&,&;) or Fr(&,&5,ém) which are located on Iy.

On each domain 2;, 1 < k < K, the error indicator is defined by

p _ :
nj(\f,)k = || Znf — o™ (-, pN) uny — grade”LQ(Qk)d + N ! |div uNHLQ(Qk)

1 1
+ > N7 2|[uy- nlyll2¢y+ D> N 2llgy —un- nll2c.
’)/Eglg ,yeglgf)



The residual equations read, for all v in L2(Q)¢,
a*Pl(u*,v) — a*PM (upy, v) 4+ (v, p* — i)
= /Q (Znf — o*(x,py) uy — gradpy ) (x) - v(x) X + /Q (f = ZnF)(x) - v(x) X,

and, for all ¢ in H(lp)(Q),

b(u* —uy,q) = (g,9)) — b(uy, q).

A further integration by parts is necessary to handle this last equation
b(u* —up,q) = (g — gn, @) + (gn, q — an) )

K
+ 3 (@ e [ - mE)a - an)dr)



Let p(2) be equal to 1 if the domain 2 is either two-dimensional or
1

convex, to N2 otherwise.
J. Pousin, J. Rappaz

Proposition. If the solution U* = (u*, p*) of the simplified problem

(i) belongs to H3(Q)4 x H5T1(Q) for some s > 0 in dimension d = 2 and
s > 5 in dimension d = 3;

(ii) is nonsingular,

there exists a neighbourhood of U* such that the following a poste-
riori error estimate holds for any solution Uy = (upy,py) Of the discrete
problem in this neighbourhood

1
lu* —upll 200y + IP* = pull gy < c(u’ ,p>(p(9)(z(n<d> 2)2
k=1

+ 1If — Inll 2 (e + o —ponll 1 +llg—gnl 4 )
) H2( ) Hao(T(f))’

where the constant c¢(u*, p*) only depends on the solution U*.



Summary of the results

Up to the terms involving the data, namely

|f —ZnTll;200y¢ + [lPo —p0N|| 1 +llg —gnll 1
(&) ( (»)) HOQO(r(f))’

the full error

E = |u—u"|| 2y + lIp = Pl 10y + 10" — unll 20y + [IP° = pull gia),

satisfies
1

K
ESC(Z((n 02+ (21§13 ))

k=1

This estimate is fully optimal when the domain 2 is two-dimensional
or convex. Moreover, for three-dimensional non-convex domains €2, the
lack of optimality only concerns the terms ||/div uNHLQ(Qk).

The indicators 77(8) seem to form an efficient tool for the automatic
simplification of the model, as described in the following strategy.



Adaptivity strategy



Let »* be a fixed tolerance.

From now on, we work with N sufficiently large for the quantities linked
to the data to be smaller than n*.

Initialization step. We first work with the partition of 2 given by
QY =0, Q0 =Q,

and we solve the corresponding linear problem.



Adaptation step. Assuming that a partition of 2 into Q%” and QQ’L IS

given, we compute the corresponding solution (uy,py) of the discrete
problem, the indicators n(s) and their mean value ng\,), the indicators n(d)

and their mean value n(d) The new partition of <2 is thus constructed
in the following way :

(i) The domain Qgﬂ'l is the union of Qa” and of all €2, such that

ni g > max {iy, my )

(i) The domain Qm+1 is taken equal to Q\Qm+1.



The adaptation step must be iterated elther a fixed number of times or

until the Hilbertian sum (Zk 1(77(5)) ) becomes smaller than n* (when
possible).

There is no proof of convergence of the partition of 2 into Q’&” and Qg".



An iterative algorithm



Assuming that an initial guess (u?\,,p?v) IS given, we solve iteratively the
problems

Find (u?,pR;) in Xy x My such that

PN =DPoN ONT (),
and

*[ n—l]
vy € Xy, ax Y C(ul,vy) +bon(va, o) = (£, va) N,

Vay € M, by (u,an) = (g, an) D



It Is readiy checked that there exists a constant )\ only depending on
U* such that any solution (u,,py) of the discrete problem satisfies

lanllpocqye < A,
with p > 2 Iin dimension d =2 and p = 3 in dimension d = 3.

Proposition. When all previous assumptions hold, there exists a positive
constant ¢y independent of N such that, if

Al (1 + %) < ¢p,
aq

the sequence (u%,p’%)n converges to (uy,py) in H1(Q)4 x L2(Q2). Moreo-
ver, the following estimate holds with x = \af(1 + g—f)cgl,

)\OéT 1
lun —uRll 2y < C&—lﬁn 7 lpn — PRl 1y < &™



A posteriori analysis
L. El Alaoui, A. Ern, M. Vohralik

In each domain €2;, 1 < k < K, we define the error indicator

' —1
NN = 1T (¥ Coof) — o Gl ™) Yl 2, o

Here also, all n%ak)n such that €2, is contained in €2, are zero.

Proposition. When all previous assumptions holds, there exists a constant
v such that the following a posteriori error estimate holds for any solu-
tion UL = (u’%,p%) in the ball with centre Uy and radius vu(N)™1,

K : 1
|luy — U—?VHLQ(Q)d + [[pn — p?\f”Hl(Q) Sc ( Z (n](\;?k),n)Q)z'
k=1

where the constant c is independent of V.



An upper bound for each n](\?“k)n can also be proven.

T he error indicators provide the appropriate tool for stopping the itera-
tive algoritthm at the right step. Moreover this algorithm can be applied
on 2, only one step over? ?,



A numerical experiment



We work on the domain
Q=]-1,1[% Moy = {-1}x]—1,1], Cp =0\ T,
The function « is equal to

a(§) = exp(§),

truncated at a; =3 and ap = 3.

We consider the given solution

u(z,y) = (sin(:c) cos(y), — cos(x) sin(y)>,

(z+ 1%+ @+ 1)2)_

p(z,y) = exp(— o

The fact that the pressure presents high variations only on a part of
the domain seems well appropriate for studying a possible simplification
of the problem.



pressure
0,00 0,143 028 0429 0571 0,714 0,857 1,00

1,0-1,0

The pressure



The discretization is performed with low degree polynomials : N = 4
but many elements : K = 324 = 182 equal squares.

We follow the previous adaptivity strategy procedure with n* = 108,

The convergence is obtained
for m = 9, which proves the efficiency of our strategy.

It can be noted that Qﬁ9 contains 22 elements.



0500 0500

Y 000 Y 000

0,500

-0,5001

0,500

00
-1,00 -0,500 0,00 0,500 1,00
X

m=7 m=8

T he successive partitions of 2 into Qﬁ and
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Interest of the simplification

T he iterative algorithm is performed as follows : Each iteration is applied
on Qﬁ and only one iteration over 4 is applied on the whole domain.

Without simplification | With simplification

Number of iterations V4 O

CPU time(s) 4.32 1.06

Comparison of the discretizations with and without simplification



Thank you for your attention



