Convergence Analysis

Numerical Experiments

# An Optimal Preconditioner for Parallel Adaptive Finite Elements

#### Sébastien Loisel & Hieu Nguyen

Department of Mathematics Heriot-Watt University

22nd International Conference on Domain Decomposition Methods September 16-20, 2013

Università della Svizzera italiana - Lugano, Switzerland



The Centre for Numerical Algorithms and Intelligent Software

Slide 1/25

Convergence Analysis

Numerical Experiments

## DDMs and AFEs



DDMs:

- start with a fine mesh
- prefer independence of work associated with each subdomain





#### AFEs:

- build meshes gradually
- Global information (computed solutions, error estimates, mesh status) is usually needed.

#### How can we combine these very different methods?



Convergence Analysis

Numerical Experiments

## DDMs and AFEs



DDMs:

- start with a fine mesh
- prefer independence of work associated with each subdomain





#### AFEs:

- build meshes gradually
- Global information (computed solutions, error estimates, mesh status) is usually needed.

#### How can we combine these very different methods?



Convergence Analysis

Numerical Experiments

# A Parallel Adaptive Meshing Algorithm







- Step I Initialization: A coarse mesh is partitioned into subdomains.
- Step II Adaptive Enrichment: Each processor gets complete coarse mesh. Each processor independently solves the entire problem but adaptively focus the adaptive enrichment on its subdomain. Regularize local meshes so that the global mesh is conforming
- Step III DD Solve: Compute global solution using a DD solver.



Convergence Analysis

Numerical Experiments

# A brief history

- The parallel adaptive meshing was first introduced in [Bank & Holst 2000, 2003]
- AFEs library deal.ii adopts the approach and show scalability up to 16384 processors: [Bangerth et al. 2011]
- DD Solver for this type of parallel algorithm: [Bank& Lu 2004]
  - use DDM as a solver
  - final system is non-symmetric
  - convergence result is limited



Convergence Analysis 00 000 Numerical Experiments

#### Model Problem and Notations

Find  $u \in H_0^1(\Omega)$  such that



- Partition:  $\bar{\Omega} = \cup_{i=1}^{N} \bar{\Omega}_i$  and  $\Omega_i \cap \Omega_j = \emptyset$
- Meshes:  $\mathcal{T}_H \subset \mathcal{T}_i \subset \mathcal{T}_h$ , and  $\mathbb{P}_1$  FE spaces:  $V_H \equiv V_0 \subset V_i \subset V_h$
- Nodal basis functions:  $\{\psi_j^{(0)}\}_1^{n_0}, \ \{\psi_j^{(i)}\}_1^{n_i}, \ \{\psi_j\}_1^n$
- Linear system of the approximated solution: Au = f.

Numerical Experiments

## Preconditioner Formulation

Preconditioner and preconditioned system:

$$P^{-1} = \sum_{i=1}^{N} R_i^T A_i^{-1} R_i,$$
$$P^{-1}A = \sum_{i=1}^{N} P_i = \sum_{i=1}^{N} R_i^T A_i^{-1} R_i A,$$

where  $R_i^T \in \mathbb{R}^{n \times n_i}$  is the extension matrix from  $V_i$  to  $V_h$ ,  $A_i = R_i A R_i^T$ .

- No explicit coarse component
- $A_i$  can be assembled locally
- $P^{-1}$  is symmetric
- $P_i$  is an "A-orthogonal projection onto  $V_i$ "





Numerical Experiments

# Spectrum Study

#### Lemma 1

There exist an A-orthogonal matrix U, Euclidean projections  $Q_i$  and  $\hat{Q}_i$  such that:

$$P_i = UQ_iU^{-1} = U\begin{bmatrix} I & 0\\ 0 & \hat{Q}_i \end{bmatrix} U^{-1},$$
$$P^{-1}A = \sum_{i=1}^N P_i \sim Q_i = \begin{bmatrix} NI & 0\\ 0 & \sum_{i=1}^N \hat{Q}_i \end{bmatrix}$$

In addition,

$$\sigma(P^{-1}A) \subset [\hat{\lambda}_{\min}, \hat{\lambda}_{\max}] \cup \{N\},\$$

where  $\hat{\lambda}_{\min}$  and  $\hat{\lambda}_{\max}$  are the smallest and largest eigenvalues of  $\sum_{i=1}^{N} \hat{Q}_i$  and  $0 < \hat{\lambda}_{\min} \le \hat{\lambda}_{\max} \le N$ .



The Centre for Numerical Algorithms and Intelligent Software

Slide 7/25

Numerical Experiments

# Convergence of CG and GMRES

#### Theorem 2

The errors  $e_k$  of the CG method and the residuals  $r_k$  of the GMRES when solving the system Au = f with left-preconditioner  $P^{-1}$  satisfy

$$\frac{\|e_k\|_A}{\|e_0\|_A} \le \frac{2(N-\hat{\lambda}_{\min})}{N} \left(\frac{\sqrt{\hat{\kappa}}-1}{\sqrt{\hat{\kappa}}+1}\right)^{k-1} < 2\left(\frac{\sqrt{\hat{\kappa}}-1}{\sqrt{\hat{\kappa}}+1}\right)^{k-1},$$
$$\frac{\|r_k\|}{\|f\|} \le 2\sqrt{\kappa(A)} \ \frac{(N-\hat{\lambda}_{\min})}{N} \left(\frac{\sqrt{\hat{\kappa}}-1}{\sqrt{\hat{\kappa}}+1}\right)^{k-1} < 2\sqrt{\kappa(A)} \left(\frac{\sqrt{\hat{\kappa}}-1}{\sqrt{\hat{\kappa}}+1}\right)^{k-1},$$

where  $\hat{\kappa} = \hat{\lambda}_{max} / \hat{\lambda}_{min}$  is called the effective condition number of  $P^{-1}A$ .

**Proof:** Consider  $q(x) = \frac{T_{k-1}(\gamma - \frac{2x}{\hat{\lambda}_{\max} - \hat{\lambda}_{\min}})(N-x)}{NT_{k-1}(\gamma)}$ . Now we need to estimate  $\hat{\lambda}_{\max}$  and  $\hat{\lambda}_{\min}$ , the second-largest and smallest eigenvalues of  $P^{-1}A$ .



Numerical Experiments

## Some Assumptions

Each  $\Omega_i$  is extended to  $\tilde{\Omega}_i$  by adding layers of elements in  $\mathcal{T}_i$ :



 $\Omega_i$  (shaded area)



 $ilde{\Omega}_i$  (shaded area)

- $\mathcal{T}_i|_{\tilde{\Omega}_i^c} \equiv \mathcal{T}_H|_{\tilde{\Omega}_i^c}$
- $d(\tilde{\Omega}_i \backslash \Omega_i) = O(H)$
- $\{\tilde{\Omega}_i\}_{i=1}^N$  can be colored using  $N^c$  colors.



Convergence Analysis

Numerical Experiments

## Cut-off functions



The Centre for Numerical Algorithms and Intelligent Software

Slide 10/25

Numerical Experiments

# Strengthened Cauchy Inequality

Let 
$$V_i^{\dagger} = \operatorname{span}\{\psi_j^{(i)} | \psi_j^{(i)} \notin V_0\}.$$

- $V_0 \oplus V_i^{\dagger} = V_i.$
- $V_i^{\dagger} \subset \tilde{V}_i = V_h \cap H_0^1(\tilde{\Omega}_i)$

## Lemma 3 ([Bank 96 ])

For  $v_0(x) \in V_0$  and  $v_i^{\dagger}(x) \in V_i^{\dagger}$ , there exist  $0 < \gamma < 1$  such that

 $|a(v_0, v_i^{\dagger})| \le \gamma ||v_0||_A ||v_i^{\dagger}||_A.$ 

where  $\gamma$  depends on the PDE, the shape regularity quality of  $\mathcal{T}_H$ ,  $\mathcal{T}_i$ , but is otherwise independent of the mesh sizes h and H.





Numerical Experiments

# Second Largest Eigenvalue Estimate

#### Theorem 4

The second largest eigenvalue of the preconditioned system  $P^{-1}A$ 

$$\hat{\lambda}_{\max} \le \frac{N^c}{(1-\gamma^2)}.$$

Sketch of Proof: Assume  $V_i^{\dagger}$  is spaned by (A-orthogonal) columns of  $W_i$  and let  $F_i = U^{-1}W_i = [X_i^T Y_i^T]^T$ .

(i) 
$$Q_i = \begin{bmatrix} I & 0 \\ 0 & Y_i(Y_i^T Y_i)^{-1} Y_i^T \end{bmatrix}$$
, or  $\hat{Q}_i = Y_i(Y_i^T Y_i)^{-1} Y_i^T$ .  
(ii)  $(1 - \gamma^2)I \preceq Y_i^T Y_i$ , ( $\preceq$  denotes the positive semi-definition ordering)  
(iii)  $\sum_{i=1}^{N} Y_i Y_i^T \preceq \sum_{i=1}^{N} \tilde{Y}_i \tilde{Y}_i^T$ .vs  $\sum_{i=1}^{N} \tilde{F}_i \tilde{F}_i^T = \sum_{i=1}^{N} \tilde{P}_i \preceq N^c I_{n-n_0}$ .



Convergence Analysis ○○ ●○○ Numerical Experiments

#### Smallest Eigenvalue Estimate

#### Theorem 5

ъ т

For  $u(x) \in V_h$  there exists  $u_i(x) \in V_i$  s.t  $u = \sum_{i=1}^N u_i$  and

$$\sum_{i=1}^{N} a(u_i, u_i) \le C_m \ a(u, u), \quad (\hat{\lambda}_{\min} \ge C_m^{-1})$$

where  $C_m$  is a constant independent of H, h and N. In addition, if

$$C^I \ge 1, \ C^{\theta} \ge 1, \ N^n \ge 8,$$

then

$$\hat{\lambda}_{\min} \ge \left(\frac{83}{45} \left(\frac{45}{4} (N^n)^2 (C^I)^4 (C^\theta)^2\right)^{N^c}\right)^{-1}$$



Numerical Experiments

Estimate  $\hat{\lambda}_{\min}$ : Interpolation Operators Given a mesh  $\mathcal{T}^{\circ}$ , choose for each node  $x_j^{\circ} \in \mathcal{T}^{\circ}$  an edge  $e^{\circ} \ni x_j^{\circ}$ , define  $I^{\circ} = I_{\tau^{\circ}}^{\{e_j^{\circ}\}} : H^1(\Omega) \to V^{\circ}$ , based on [Scott & Zhang 90]:

$$I^{\circ}u(x) = \sum_{j=1}^{n_i} \psi_j^{\circ}(x) \int_{e_j^{\circ}} \eta_j^{\circ}(\xi) u(\xi) d\xi,$$

where  $\eta_j^{\circ}$  is  $L^2(e_j^{\circ})$ -dual basis functions  $\int_{e_j^{\circ}} \eta_j^{\circ} \psi_k^{\circ} = \delta_{jk}, \ k = 1, \dots, n^{\circ}.$ 

- Need a systematic way to choose edges  $\{e_j^\circ\}$
- Stability properties  $(I_i^{h,H} = I_{V_0}^{\{e_j^{(i)}\}}, I_i^H = I_{V_0}^{\{e_j^{(0)}\}})$

$$\begin{aligned} \|I_i^{h,H}u\|_{H^1(K)} &\leq C^I \ |u|_{H^1(w_K)}, & K, w_K \in \mathcal{T}_i, \\ \|u - I^H u\|_{L^2(K)} &\leq C^I \ H|u|_{H^1(w_K)}, & K, w_K \in \mathcal{T}_H, \\ \|I^H u\|_{H^1(K)} &\leq C^I \ |u|_{H^1(w_K)}, & K, w_K \in \mathcal{T}_H. \end{aligned}$$



• Assumption: the number of element in  $w_K$  is less than  $N^n$ .

#### **Residual Functions**

For  $u(x) \in V_h$ , let  $u^{(0)}(x) := u(x)$ . For each colour  $c_k$ , a residual function  $u^{(k)}(x)$  is defined as follows

$$\begin{split} w^{(k)} &= I^{H} u^{(k-1)}, & (w^{(k)} \in V_{H}) \\ v^{(k)} &= u^{(k-1)} - w^{(k)}, & (v^{(k)} \in V_{h}) \\ v^{(k)}_{i} &= I^{h,H}_{i} \theta^{(c_{k})}_{i} v^{(k)}, & (v^{(k)}_{i} \in V_{i}). \\ u^{(k)} &= v^{(k)} - \sum_{i \in \mathcal{C}_{k}} v^{(k)}_{i}, & (u^{(k)} \in V_{h}) \end{split}$$

Then the following equalities hold

4 ie

$$\begin{split} u^{(k)}|_{\bar{\Omega}_{i}} &\equiv 0, \quad \text{for all } i \in \mathcal{C}_{k_{i}}, \ k_{i} \leq k, \\ u &= \sum_{k=0}^{N^{c}-1} w^{(k)} + \sum_{k=1}^{N^{c}} \sum_{i \in C_{k}} v^{(k)}_{i}, \\ \sum_{e \in \mathcal{C}_{k}} v^{(k)}_{i} \Big|_{H^{1}(\Omega)}^{2} &= \sum_{i \in \mathcal{C}_{k}} \left| v^{(k)}_{i} \right|_{H^{1}(\Omega)}^{2}. \end{split}$$



The Centre for Numerical Algorithms and Intelligent Software

Slide 15/25

Convergence Analysis

Numerical Experiments •0000 00000

# Square Problem

$$\begin{split} -\Delta u &= f & \quad \mbox{in } \Omega = (0,1) \times (0,1), \\ u &= 0 & \quad \mbox{on } \partial_D \Omega, \end{split}$$

We compute the smallest and second largest eigenvalues of  $P^{-1}A$  for

$$H = 2^{-k}, \ k = 2, 3, \dots 6,$$
$$N = 2^{2l}, \ 1 \le l \le k,$$
$$h = 2^{-m}, \ m > k.$$







The Centre for Numerical Algorithms and Intelligent Software

Slide 16/25

| ntrod  | uction                      |          | 00<br>000    | Numer<br>00000<br>00000 | ical Experiments |          |          |  |  |  |  |
|--------|-----------------------------|----------|--------------|-------------------------|------------------|----------|----------|--|--|--|--|
|        | h                           | $2^{-3}$ | $2^{-4}$     | $2^{-5}$                | $2^{-6}$         | $2^{-7}$ | $2^{-8}$ |  |  |  |  |
|        | N = 4                       |          |              | H =                     |                  |          |          |  |  |  |  |
|        | $\hat{\lambda}_{\min}$      | 0.9428   | 0.9303       | 0.9287                  | 0.9283           | 0.9282   | 0.9282   |  |  |  |  |
|        | $\hat{\lambda}_{	ext{max}}$ | 3.1389   | 4.0000       | 4.0000                  | 4.0000           | 4.0000   | 4.0000   |  |  |  |  |
|        | N = 16                      |          |              |                         |                  |          |          |  |  |  |  |
|        | $\hat{\lambda}_{\min}$      | 1.0000   | 0.9354       | 0.9290                  | 0.9285           | 0.9283   | 0.9282   |  |  |  |  |
|        | $\hat{\lambda}_{	ext{max}}$ | 5.4898   | 9.3334       | 9.3352                  | 9.3353           | 9.3353   | 9.3353   |  |  |  |  |
|        | N = 4                       |          | $H = 2^{-3}$ |                         |                  |          |          |  |  |  |  |
|        | $\hat{\lambda}_{\min}$      |          | 0.9304       | 0.9287                  | 0.9283           | 0.9282   | 0.9282   |  |  |  |  |
|        | $\hat{\lambda}_{	ext{max}}$ |          | 3.1360       | 4.0000                  | 4.0000           | 4.0000   | 4.0000   |  |  |  |  |
|        | N = 16                      |          |              |                         |                  |          |          |  |  |  |  |
|        | $\hat{\lambda}_{\min}$      |          | 0.9355       | 0.9290                  | 0.9285           | 0.9283   | 0.9282   |  |  |  |  |
|        | $\hat{\lambda}_{	ext{max}}$ |          | 3.2546       | 4.4092                  | 4.4203           | 4.4207   | 4.4207   |  |  |  |  |
|        | N = 64                      |          |              |                         |                  |          |          |  |  |  |  |
|        | $\hat{\lambda}_{\min}$      |          | 1.0000       | 0.9330                  | 0.9286           | 0.9284   | 0.9283   |  |  |  |  |
|        | $\hat{\lambda}_{	ext{max}}$ |          | 5.6720       | 9.9448                  | 9.9509           | 9.9511   | 9.9507   |  |  |  |  |
| JKIU I |                             |          |              |                         |                  |          |          |  |  |  |  |

HERIOT

Convergence Analysis 00 000 Numerical Experiments

| h                           | $2^{-3}$ | $2^{-4}$ | $2^{-5}$ | $2^{-6}$     | $2^{-7}$ | $2^{-8}$ |
|-----------------------------|----------|----------|----------|--------------|----------|----------|
| N = 4                       |          |          | L        | $H = 2^{-4}$ |          |          |
| $\hat{\lambda}_{\min}$      |          |          | 0.9287   | 0.9283       | 0.9282   | 0.9282   |
| $\hat{\lambda}_{\max}$      |          |          | 3.1355   | 4.0000       | 4.0000   | 4.0000   |
| N = 16                      |          |          | 0.0001   | 0.0005       | 0.0000   | 0.0000   |
| $\lambda_{\min}$            |          |          | 0.9291   | 0.9285       | 0.9283   | 0.9282   |
| N = 64                      |          |          | 5.1507   | 4.0229       | 4.0242   | 4.0243   |
| $\hat{\lambda}_{\min}$      |          |          | 0.9331   | 0.9286       | 0.9284   | 0.9282   |
| $\hat{\lambda}_{	ext{max}}$ |          |          | 3.3108   | 4.4541       | 4.4657   | 4.4661   |
| N = 256                     |          |          |          |              |          |          |
| $\hat{\lambda}_{\min}$      |          |          | 1.0000   | 0.9324       | 0.9285   | 0.9284   |
| $\lambda_{ m max}$          |          |          | 5.7366   | 10.1181      | 10.1248  | 10.1251  |



The Centre for Numerical Algorithms and Intelligent Software

Slide 18/25

Convergence Analysis

Numerical Experiments

| h                           | $2^{-3}$ | $2^{-4}$ | $2^{-5}$ | $2^{-6}$     | $2^{-7}$ | $2^{-8}$ |
|-----------------------------|----------|----------|----------|--------------|----------|----------|
| N = 4                       |          |          |          | $H = 2^{-5}$ |          |          |
| $\hat{\lambda}_{\min}$      |          |          |          | 0.9284       | 0.9282   | 0.9282   |
| $\hat{\lambda}_{	ext{max}}$ |          |          |          | 3.1355       | 4.0000   | 4.0000   |
| N = 16                      |          |          |          |              |          |          |
| $\hat{\lambda}_{\min}$      |          |          |          | 0.9285       | 0.9283   | 0.9282   |
| $\hat{\lambda}_{	ext{max}}$ |          |          |          | 3.1366       | 4.0012   | 4.0013   |
| N = 64                      |          |          |          |              |          |          |
| $\hat{\lambda}_{\min}$      |          |          |          | 0.9286       | 0.9284   | 0.9283   |
| $\hat{\lambda}_{	ext{max}}$ |          |          |          | 3.1541       | 4.0253   | 4.0270   |
| N = 256                     |          |          |          |              |          |          |
| $\hat{\lambda}_{\min}$      |          |          |          | 0.9325       | 0.9285   | 0.9284   |
| $\hat{\lambda}_{	ext{max}}$ |          |          |          | 3.3270       | 4.4638   | 4.4754   |
| N = 1024                    |          |          |          |              |          |          |
| $\hat{\lambda}_{\min}$      |          |          |          | 1.0000       | 0.9322   | 0.9285   |
| $\hat{\lambda}_{	ext{max}}$ |          |          |          | 5.7671       | 10.1580  | 10.1647  |



The Centre for Numerical Algorithms and Intelligent Software

Slide 19/25

Convergence Analysis

Numerical Experiments

# Coloring

| 1 | 2 | 4 | 3 |
|---|---|---|---|
| 4 | 3 | 1 | 2 |
| 1 | 2 | 4 | 3 |
| 4 | 3 | 1 | 2 |

| 1 | 2 | 5 | 1 |
|---|---|---|---|
| 4 | 3 | 6 | 4 |
| 7 | 8 | 9 | 7 |
| 1 | 2 | 5 | 1 |



Numerical Experiments

## Seepage Under Dam



where  $h(\boldsymbol{x},\boldsymbol{y})$  is the total head and  $k(\boldsymbol{x},\boldsymbol{y})$  is the hydraulic permeability coefficient





The Centre for Numerical Algorithms and Intelligent Software

Slide 21/25

#### Seepage Under Dam: Coarse Mesh of 1264 DOFs

|         | n = 5832 |       | n = 2  | n = 22931 |        | n = 90933 |        | n = 362153 |        | n = 1445457 |  |
|---------|----------|-------|--------|-----------|--------|-----------|--------|------------|--------|-------------|--|
| N       | CG       | GM    | CG     | GM        | CG     | GM        | CG     | GM         | CG     | GM          |  |
| $2^{1}$ | 3(9)     | 2(7)  | 3(9)   | 2(8)      | 3(8)   | 2(7)      | 3(9)   | 2(7)       | 3(9)   | 3(8)        |  |
| $2^2$   | 4(10)    | 3(9)  | 4(10)  | 3(9)      | 4(9)   | 3(8)      | 4(10)  | 3(9)       | 4(11)  | 3(9)        |  |
| $2^3$   | 6(11)    | 4(10) | 6(11)  | 4(10)     | 6(10)  | 4(9)      | 5(11)  | 4(10)      | 5(13)  | 4(11)       |  |
| $2^4$   | 8(12)    | 5(11) | 8(11)  | 5(10)     | 8(11)  | 5(10)     | 8(13)  | 5(11)      | 7(16)  | 5(13)       |  |
| $2^{5}$ | 10(12)   | 4(12) | 10(12) | 5(10)     | 10(12) | 5(11)     | 10(14) | 5(13)      | 9(18)  | 5(16)       |  |
| $2^{6}$ | 11(14)   | 5(13) | 12(12) | 5(11)     | 11(13) | 5(11)     | 11(15) | 5(14)      | 10(19) | 6(16)       |  |
| $2^{7}$ | 12(15)   | 5(14) | 13(13) | 5(12)     | 13(14) | 6(12)     | 12(17) | 6(15)      | 12(21) | 6(18)       |  |
| $2^{8}$ | 16(16)   | 7(15) | 16(15) | 7(13)     | 16(16) | 7(14)     | 16(19) | 7(16)      | 15(23) | 7(20)       |  |
| $2^{9}$ | 16(17)   | 8(16) | 18(15) | 8(13)     | 18(16) | 8(15)     | 18(20) | 8(17)      | 17(26) | 8(21)       |  |

Number of CG iterations and GMRES iterations to reduce the error and residual respectively by a factor of 1e6 using  $P^{-1}$  and two-level additive Schwarz (in parentheses).

The Centre for Numerical Algorithms and Intelligent Software

Slide 22/25

#### Seepage Under Dam: Coarse Mesh of 2784 DOFs

|         | n = 10859 |       | n = 42885 |       | n = 17 | n = 170441 |        | n = 679569 |        | n = 2713889 |  |
|---------|-----------|-------|-----------|-------|--------|------------|--------|------------|--------|-------------|--|
| N       | CG        | GM    | CG        | GM    | CG     | GM         | CG     | GM         | CG     | GM          |  |
| $2^{1}$ | 3(9)      | 2(7)  | 3(9)      | 2(8)  | 3(8)   | 2(7)       | 3(8)   | 2(7)       | 3(9)   | 2(8)        |  |
| $2^2$   | 4(10)     | 3(9)  | 4(9)      | 3(8)  | 4(9)   | 3(8)       | 4(10)  | 3(8)       | 4(11)  | 3(9)        |  |
| $2^3$   | 6(11)     | 3(10) | 6(10)     | 3(9)  | 6(11)  | 3(9)       | 6(12)  | 3(11)      | 6(15)  | 3(13)       |  |
| $2^4$   | 8(12)     | 4(11) | 8(11)     | 5(10) | 8(12)  | 5(10)      | 8(14)  | 5(11)      | 7(17)  | 5(14)       |  |
| $2^{5}$ | 9(12)     | 4(11) | 9(11)     | 5(10) | 9(12)  | 5(10)      | 9(14)  | 5(12)      | 9(17)  | 5(15)       |  |
| $2^{6}$ | 10(13)    | 4(12) | 10(12)    | 4(11) | 10(13) | 5(11)      | 10(16) | 5(14)      | 10(20) | 6(16)       |  |
| $2^{7}$ | 11(14)    | 4(13) | 12(13)    | 4(11) | 11(14) | 4(11)      | 11(16) | 4(14)      | 10(20) | 4(17)       |  |
| $2^{8}$ | 14(15)    | 6(14) | 15(13)    | 6(12) | 15(15) | 6(13)      | 15(18) | 6(15)      | 14(23) | 6(20)       |  |
| $2^{9}$ | 17(17)    | 7(16) | 17(15)    | 7(13) | 17(16) | 7(13)      | 17(19) | 7(16)      | 16(24) | 7(20)       |  |

Number of CG iterations and GMRES iterations to reduce the error and residual respectively by a factor of 1e6 using  $A^{-1}$  and two-level additive Schwarz (in parentheses).

The Centre for Numerical Algorithms and Intelligent Software

Slide 23/25

Convergence Analysis

Numerical Experiments

# Conclusions

- We formulated a preconditioner for parallel adaptive finite elements
- We showed that the preconditioner is optimal (the effective condition number is bounded independently of the mesh sizes and the number of subdomains.
- Numerical experiments confirm the theoretical results.



Convergence Analysis

Numerical Experiments

#### Acknowledgement

NAIS The Centre for Numerical Algorithms and Intelligent Software



Promoting further and higher education



Pioneering research and skills



The Centre for Numerical Algorithms and Intelligent Software

Slide 25/25