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1 Introduction

We are interested in this paper in anisotropic diffusion problems of the form

L(u) :=—div(AVu) +nu= fin 2, w=0 on 02, (1)
Apr A

with (z,y) € 2 — A(x, —< v my) 2

(@) @) = (47 4 @

Over the last five years, classical and optimized Schwarz methods have been
developed for (1) discretized with Discrete Duality Finite Volume (DDFV)
schemes. Like for Discontinuous Galerkin methods, it is not a priori clear how
to appropriately discretize transmission conditions. Two versions have been
proposed for Robin transmission conditions in [2] and [4]. Only the second
one leads to the expected rapid convergence rate of the optimized Schwarz
algorithm, see [1] for parabolic problems.

The DDFV method needs a dual set of unknowns located on both ver-
tices and “centers” of the initial mesh, which leads to two meshes, the primal
and the dual one. This permits the reconstruction of two-dimensional dis-
crete gradients located on a third partition of {2, called the diamond mesh. A
discrete divergence operator is also defined by duality. This method is partic-
ularly accurate in terms of gradient approximations, see the benchmark [6]
for problem (1) with n = 0, and also an extensive bibliography.

A non-overlapping Schwarz method using Ventcell transmission conditions
was first proposed in [7]. For the model problem (1), the algorithm with two
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Fig. 1 Diamond symbols are vertices of primal cells, circles are vertices of dual cells. Left:
zoom on diamond cells in gray. Center: zoom on the interface I', and new unknowns needed
to describe the DDFV scheme as the limit of the Schwarz algorithm. Right: zoom on a
dual cell K* cut by I': K* = K] UK3 with KJ = ; NK*.

non-overlapping subdomains, {2 = §2; U {25, and iteration index [ = 0,1,...
is

ﬁ(uéﬂ) =f inf2;, wu=0 ondf2;NaoN, (3)
(AVU?H’ nji) + Au?rl = _(Avuiv nij) + Aui on I'= 9042 N 8“Qj7 (4>

with Au = pu — ¢dy(Ay,0yu) (assuming that I' = {x = 0}) and nj; is the
unit normal directed from §2; to §2;. A FV4 finite volume discretization of
this algorithm for an advection diffusion equation with isotropic diffusion is
analyzed in [5]. We present here a DDFV discretization of (3)-(4), and prove
convergence of the discretized algorithm.

2 DDFV schemes

The meshes: We now describe the DDFV Schwarz algorithm for general
subdomains and decompositions using the notation from [2], see Figure 1.
The primal mesh 90; is a set of disjoint open polygonal control volumes
K C {2; such that UK = £2;. We denote by 990; the set of edges of the control
volumes in M; included in 942;, and by 99, . the set of edges of primal
boundary cells related to the interface I'. We use the same notations for the
dual mesh, 97, 393?; and M7 .. We define the diamond cells Dy ,+ as the
quadrangles whose diagonals are a primal edge 0 = K|L = (z~,2+) and a
corresponding dual edge 0* = K*|L* = (zk, ). The set of diamond cells is
called the diamond mesh, denoted by ;.

For any V' in 901; U 00, or M U OM, we denote by my its Lebesgue
measure, by &y the set of its edges, and Dy 1= {Dy o+ € D;, 0 € Ey}. For
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D = D, - with vertices (xk,Zx+, 2y, zy+), we denote by x;, the center of D,
that is the intersection of the primal edge o and the dual edge o*, by my, its
measure, by m, the length of o, by ms~ the length of o*, by m,,. the length
of 9k* N I', by m,, the length of DN I", and by m,, the length of [z, zp).
N, is the unit vector normal to o oriented from zx to x;, and ng k-« is the
unit vector normal to o* oriented from xy- to xy«.

The unknowns: the DDFV method associates to all primal control vol-
umes K € 9; UM, an unknown value u; x, and to all dual control volumes

K* € M7 U IM; an unknown value u; k- We denote the approximate solu-

tion on the mesh 7; by ur, = ((uj,x)xe(on;uam;); (Uj,K*)K*e(m;uagn;)) e R7.
DDFV schemes are described by two operators: a discrete gradient V*® and
a discrete divergence div”, which are dual to each other, see [2]. We define

the discrete gradient V® : u; € R (VDuT)D€® € (R?)® by

1
VPu, =

= ((u, — )Mok + (Ups — Ugs )Mp=Ngprg= ), VD €D,
2mD

and the discrete divergence div” : o = (&)pen = div’ €n € R7 by

1
divién = — Z Mo (€p, Moy ), VK € M, and divién = 0,VK € OM,(5)

K peo,
« 1
dive ¢p = D Mg (€nngege), VKT € MT UM, (6)
m](*
De®Dy«
We introduce additional flux unknowns ;. for j = 1,2 on interface
dual cells K* € M . Let N be the number of edges on I'. We sort these
edges o1,...,0n such that o5 Nosy1 # 0, and Ty, Ty, are the vertices of

o, where zx = 03 Nos_1. For ur, € R7, U € Ram;vf, fr; € R7 and
hr, € ROM5.rU9M r e denote by Eg,p(uﬂ,wﬂ,fﬁ,hﬂ) = 0 the linear
system

—div* (Ao VPur,) + nxujx = fx, VK€M, (7)

—div® (ApVPur,) + N-ttjr = fier, ¥ K* € MY, (8)

_Z ZZ (ApVPuUyr Do) — :’;1 Pjace e g > = fiee, VK* € 0N 1, (9)
e (ApVPur,,n,0,) + Afmj'F(Uamj,p) =hj., VLEIMr, (10)
Yo+ Agr T (g ) = by, VK € O, (11)

u;x =0, VKE 891(] N os2, uj =0, V K* € 89)2;* Nos2, (12)

and for s=1,--- ,N

89313',1* q uijerl _ uijs uijs - uj7Ls—1
Ay (uoam; ) = puj, — Ayy - ;
Mo, M. Mo,
s+1 H
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where uj, = UjLy,, =0, and for s =2,.-- | N

o’ .

A " (ugo: ) = Pujuce — Ayy

q (uj,K:H Uiy Ui T uj,K:_l)
Mo, Mo

s s

Note that uj,; = ujy,, = 0 because of the homogeneous boundary condi-
tion on 2. The unit normal n,y; is oriented from (2; to 2;.

Equations (7)-(9) correspond to approximations of the equation after in-
tegration on M;, M and IM; equations (10) and (11) stem from the trans-
mission condition on 0M; r and 393?;7 ;3 equation (12) corresponds to the
Dirichlet boundary condition on 942.

The DDFV optimized Schwarz algorithm performs for an arbitrary initial
guess h(}j € ROMG.ruoM; i ¢ {1,2} and I = 1,2,... the following steps:

*

e Compute for j = 1,2 the solutions (uff!, Wl!) € R7 x R of
j 1 ! l
E;;,F(uélvwfrjlvijthj) =0. (13)
e Evaluate for 4,5 € {1,2}, j # i the new interface values thng by
WAL = — (A VPultt ) + AT (), VL€ 0 p,  (14a)

BAL =~ AT (), VKT € 0t (14b)

7,K* 7,K*

Theorem 1 (Well-posedness of subdomain problems). For any f;, €
R75 and hy, € RO 00N r there exists a unique solution (ur;,¥r,) €
RTJ X Ramjypuamf

i of the linear system E;jj'_’F(uTj,!I/Tj Sy hr,) =0.

T

Proof. By linearity, it is sufficient to prove that if £ r(ur;,¥r,,0,0) =0,
then u,, = 0 and ¥;-, = 0. We multiply equation (7) by myu; x and equations
(8)-(9) by my-uj k- and sum the results over all control volumes in 9; and
M*j UOM? .. Reordering the different contributions over all diamond cells,
we obtain

2> " mp(ApVPur,, VPur)) + (A7 (ugmm, ,.), vom, )
DED

oOM7 2 2
+ (A P(Uaim;yp)a Uazm;yp) + E MkMkUj + E Mg N Uj = = 0.
KEM; K*eM?

The result thus follows by discrete Poincaré inequalities (see for example [2])
and the properties of A9 and AT,

Theorem 2 (Convergence of the DDFV Schwarz algorithm). The
solution of the Schwarz algorithm (13)-(14) converges as l goes to oo to the
solution of the DDFV scheme on the entire domain (2.
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Proof. We follow the ideas of [5]: we first rewrite the DDFV scheme for the
problem on {2 as the limit of the Schwarz algorithm. To this end, we introduce
new unknowns near the boundary I', see Figure 1:

o Vxy € (2 and xx- € (2, we set ugq = ug and uF5. = ug-,
o YV xy €0 and xy- € 012, we set uJ; —Oandqu*—O
e Y, €I choose uZs in such a way that A; VPu> 7 Mo, = —A; VP> & Mokt
- o Moy, Mo, (Ajngy;, Do)
U = UWU; = Uk,
J,L 2,L g m
(AjmgKi + AimUKj) (nox;, Do, ) ox
(Ainok,, Dok, ) Ups — Uge
5o oK; L K
+ ug; + (A; — Aj) (na*x; ) naxj) )

Ma,, Mo

o Vg €', K* = K] UKj with Kj € 99 ., choose u75. = ui%. = ux- and

oo __ oo vD [e%e] mK;
= Wik = _m Mo« (Ap Uz, Doy ) + m (Mher e — ficr)
Ok * De@ " Oy*
Mg*

= — chr* DVDUOTC:»HJ*K;‘) - m - (nK*UK* - fK*)
U“*DE’D Ty

By linearity, it suffices to prove convergence of the DDFV Schwarz algorithm
(7) to 0. We have constructed (u3,47) from the solution ur of the DDFV
scheme on 2 such that

p—
ﬁﬂg’F(u%a@b%aijah:—oj) =0.

l+ l+1 l+1 l+1 :
Observe that the errors e+ = u’’ u?oj =7 wﬁoj satisfy

£ P 0,0 ) =,
with
VK €M, Hio=-0l .+ AP (e )
VieoMr, Hi = f(ADVDeﬂ,naLi) F AT (L),
An a priori estimate using discrete duality leads to

2 Z mD(ADVDethl,VDeZTtl)
PED;

D _I+1 l+1 41 1
— E my (ApV-e + ngLJ g Mo ¥

RSN
Leamjvp K*eam*

JerKnK 112 Z e M= ]K*) =0.

KEM; K*EMTUHM? -
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Using the scalar product defined by (A7)

D 1+1 om I+1
—((A@V eTﬂ"nj)’A "e ame)>(A09nr)7

l
)eﬁl =

1 we get
D I+1
75 Mg, (ApV 7*+anc7LJ )

LEOM,
with n; the unit outward normal of £2;. The formula —4ab = (a—b)? —(a+b)?

now implies
- Z mGL(ADVDelTJ;l,nULJ)eﬁ1
LEOM,
:i H*(Az)vgel;T’nj) + Aamr(eg—g}?% ) (A®Mpy—1
)+ AP (L) P

1
— ZH(A@VQBthl, nj

Using the Ventcell transmission condition, we now obtain

D I+1 1+1
- Z Mo, (A VP el ngy, el
LE@gﬁj,[‘
1 D I+1 oMy 141 2
—|—-(ApV7e " n;) + AT
4 H ( ° L ]) (6m ) (A9Mpy—1
2

1

2 O8N . OMr (1

1 H (A@V €r anz) + A (eamiyp) (AOW )1 .
In a same way, we also obtain
Z 141 141 1 I+1 oM ¢ 141 2
- Mo W_] k*Cik* = 7 HfWTJ + 4 F(eazm* ) ‘(Aasm}),
K*€OM?
1 . 2
2yt MY (1
1 H ![/Ti + A (eam;r) ‘(Aagm?)7

Summing over [ and j, the boundary terms cancel and we obtain the estimate

D l+1 oD I+1
pVoer, Vier)

25 Y Y

=0 j=1,2p€®;
I+1 )2

lmaz—1 lmaz—1
l+1
DD I DRI C IR DD DI DR G
n=0 j= 12K*69ﬁ;‘U3§m;1F

n=0 j= 12K€m
. 2
<> 7H—(A©V©€3 7nj)+/18mp(608%f)‘ omry-1
j:124 e
2
oMy (0
+ Z 1 H ,+A F(eamip) ‘(Aasm;),
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This shows that the total energy stays bounded as the iteration [ goes to
infinity, and hence the algorithm converges.

3 Numerical experiments

We use the domain 2 = (—1,1) x (0,1) with the two subdomains = > 0
and x < 0. For the first experiment, we choose the data such that the exact
solution is u(x, y) = cos(2.5mx) cos(2.5my), where we set n:= 1 and

Az,y) == ((1)2 ??) forx <0, and A(z,y) := <ég 015> for z > 0.

Starting with a random initial guess, Figure 2 shows the convergence history

1
1 Robin Robin
Ventcell 1e-2-] Ventcell
le-4-

le-6-

Error

le-8-

1le-107

le-12+

le-14
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Numbers of iteration Numbers of iteration
Ti X
luy ' —uTi]]s
NuT ]2
conforming triangle-square mesh configuration (right).

Fig. 2 Convergence history for non-conforming square meshes (left) and a

of the algorithms using the Robin or Ventcell transmission conditions. For a
fair comparison, the parameters p and g were numerically chosen to obtain
the best convergence rate in each case. On the left, we used a non-conforming
32 x 32 square mesh on (27 and a 48 X 48 square mesh on {25 with p = 11.2 and
q = 0.007 for the Ventcell transmission condition, and p = 28 and ¢ = 0 for
the Robin one. On the right, we used a conforming triangle-square mesh on
21-025 with p = 11.6 and ¢ = 0.014 for the Ventcell transmission condition,
and p = 23.5 and g = 0 for the Robin one. We clearly see that the algorithm
converges much faster with the Ventcell condition.

We next simulate the error equations, i.e. using homogeneous data, for a
conforming square mesh (2¢ x 2¢ squares on £2;, j =1,2). We start again with
a random initial guess. On the left in Figure 3, we show the p that worked
best as h is refined, and on the right the corresponding g. We also plot the
asymptotic parameters from [3], which shows that the optimized parameters
of the DDFV discretization behave asymptotically as expected.

In conclusion, we have shown how to discretize an optimized Schwarz al-
gorithm with Ventcell transmission conditions using discrete duality finite
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Fig. 3 Behavior of the numerically optimized parameter p on the left, ¢ on the right.

volumes. Using energy estimates, we proved that the algorithm converges,
and we showed in numerical experiments that the convergence is substan-
tially faster than for Robin transmission conditions. We also showed that
the optimized parameters behave asymptotically as expected from a contin-
uous analysis. We are currently working on an asymptotic analysis for the
optimized parameters and associated contraction factor of the algorithm.
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