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1 Introduction

We are interested in this paper in anisotropic diffusion problems of the form

L(u) := −div(A∇u) + ηu = f in Ω, u = 0 on ∂Ω, (1)

with (x, y) ∈ Ω 7→ A(x, y) =

(
Axx Axy

Axy Ayy

)
. (2)

Over the last five years, classical and optimized Schwarz methods have been
developed for (1) discretized with Discrete Duality Finite Volume (DDFV)
schemes. Like for Discontinuous Galerkin methods, it is not a priori clear how
to appropriately discretize transmission conditions. Two versions have been
proposed for Robin transmission conditions in [2] and [4]. Only the second
one leads to the expected rapid convergence rate of the optimized Schwarz
algorithm, see [1] for parabolic problems.

The DDFV method needs a dual set of unknowns located on both ver-
tices and “centers” of the initial mesh, which leads to two meshes, the primal
and the dual one. This permits the reconstruction of two-dimensional dis-
crete gradients located on a third partition of Ω, called the diamond mesh. A
discrete divergence operator is also defined by duality. This method is partic-
ularly accurate in terms of gradient approximations, see the benchmark [6]
for problem (1) with η = 0, and also an extensive bibliography.

A non-overlapping Schwarz method using Ventcell transmission conditions
was first proposed in [7]. For the model problem (1), the algorithm with two
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Fig. 1 Diamond symbols are vertices of primal cells, circles are vertices of dual cells. Left:
zoom on diamond cells in gray. Center: zoom on the interface Γ , and new unknowns needed

to describe the DDFV scheme as the limit of the Schwarz algorithm. Right: zoom on a
dual cell k∗ cut by Γ : k∗ = k∗

1 ∪ k∗
2 with k∗

i = Ωi ∩ k∗.

non-overlapping subdomains, Ω = Ω1 ∪ Ω2, and iteration index l = 0, 1, . . .
is

L(ul+1
j ) = f in Ωj , u = 0 on ∂Ωj ∩ ∂Ω, (3)

(A∇ul+1
j ,nji) + Λul+1

j = −(A∇uli,nij) + Λuli on Γ = ∂Ωi ∩ ∂Ωj , (4)

with Λu = pu − q∂y(Ayy∂yu) (assuming that Γ = {x = 0}) and nji is the
unit normal directed from Ωj to Ωi. A FV4 finite volume discretization of
this algorithm for an advection diffusion equation with isotropic diffusion is
analyzed in [5]. We present here a DDFV discretization of (3)-(4), and prove
convergence of the discretized algorithm.

2 DDFV schemes

The meshes: We now describe the DDFV Schwarz algorithm for general
subdomains and decompositions using the notation from [2], see Figure 1.
The primal mesh Mj is a set of disjoint open polygonal control volumes
k ⊂ Ωj such that ∪k = Ωj . We denote by ∂Mj the set of edges of the control
volumes in Mj included in ∂Ωj , and by ∂Mj,Γ the set of edges of primal
boundary cells related to the interface Γ . We use the same notations for the
dual mesh, M∗

j , ∂M
∗
j and ∂M∗

j,Γ . We define the diamond cells dσ,σ∗ as the
quadrangles whose diagonals are a primal edge σ = k|l = (xk∗ , xl∗) and a
corresponding dual edge σ∗ = k∗|l∗ = (xk, xl). The set of diamond cells is
called the diamond mesh, denoted by Dj .

For any V in Mj ∪ ∂Mj or M∗
j ∪ ∂M∗

j , we denote by mV its Lebesgue
measure, by EV the set of its edges, and DV := {dσ,σ∗ ∈ Dj , σ ∈ EV }. For
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d = dσ,σ∗ with vertices (xk, xk∗ , xl, xl∗), we denote by xd the center of d,
that is the intersection of the primal edge σ and the dual edge σ∗, by md its
measure, by mσ the length of σ, by mσ∗ the length of σ∗, by mσk∗ the length
of ∂k∗ ∩ Γ , by mσl the length of d ∩ Γ , and by mσk the length of [xk, xd].
nσk is the unit vector normal to σ oriented from xk to xl, and nσ∗k∗ is the
unit vector normal to σ∗ oriented from xk∗ to xl∗ .

The unknowns: the DDFV method associates to all primal control vol-
umes k ∈ Mj ∪ ∂Mj an unknown value uj,k, and to all dual control volumes
k∗ ∈ M∗

j ∪ ∂M∗
j an unknown value uj,k∗ . We denote the approximate solu-

tion on the mesh Tj by uTj
= ((uj,k)k∈(Mj∪∂Mj), (uj,k∗)k∗∈(M∗

j∪∂M∗
j )
) ∈ RTj .

DDFV schemes are described by two operators: a discrete gradient ∇D and
a discrete divergence divT , which are dual to each other, see [2]. We define
the discrete gradient ∇D : uT ∈ RT 7→

(
∇DuT

)
D∈D

∈ (R2)D by

∇DuT :=
1

2mD
((ul − uk)mσnσk + (ul∗ − uk∗)mσ∗nσ∗k∗) , ∀D ∈ D,

and the discrete divergence divT : ξD = (ξd)D∈D 7→ divT ξD ∈ RT by

divkξD :=
1

mk

∑
D∈Dk

mσ(ξd,nσk), ∀k ∈ M, and divkξD = 0, ∀k ∈ ∂M,(5)

divk
∗
ξD :=

1

mk∗

∑
D∈Dk∗

mσ∗(ξd,nσ∗k∗), ∀k∗ ∈ M∗ ∪ ∂M∗. (6)

We introduce additional flux unknowns ψj,k∗ for j = 1, 2 on interface
dual cells k∗ ∈ ∂M∗

j,Γ . Let N be the number of edges on Γ . We sort these
edges σ1, . . . , σN such that σs ∩ σs+1 ̸= ∅, and xk∗

s
, xk∗

s+1
are the vertices of

σs, where xk∗
s
= σs ∩ σs−1. For uT j ∈ RTj , ΨT j ∈ R∂M∗

j,Γ , fT j ∈ RTj and

hT j ∈ R∂Mj,Γ∪∂M∗
j,Γ , we denote by LT j

Ωj ,Γ
(uT j , ΨT j , fT j , hT j ) = 0 the linear

system

−divk
(
AD∇DuT j

)
+ ηkuj,k = fk, ∀ k ∈ Mj , (7)

−divk
∗ (
AD∇DuT j

)
+ ηk∗uj,k∗ = fk∗ , ∀ k∗ ∈ M∗

j , (8)

−
∑

D∈Dk∗

mσ∗

mk∗

(
Ad∇DuT j ,nσ∗k∗

)
−mσk∗

mk∗
ψj,k∗+ηk∗uj,k∗ =fk∗ ,∀k∗ ∈ ∂M∗

j,Γ , (9)(
Ad∇DuT j ,nσlj

)
+ Λ

∂Mj,Γ
l (u∂Mj,Γ

) = hj,l, ∀ l ∈ ∂Mj,Γ , (10)

ψj,k∗ + Λ
∂M∗

j,Γ

k∗ (u∂M∗
j,Γ

) = hj,k∗ , ∀ k∗ ∈ ∂M∗
j,Γ , (11)

uj,k = 0, ∀ k ∈ ∂Mj ∩ ∂Ω, uj,k∗ = 0, ∀ k∗ ∈ ∂M∗
j ∩ ∂Ω, (12)

and for s = 1, · · · , N

Λ
∂Mj,Γ
ls (u∂Mj,Γ ) = puj,ls −Ayy

q

mσs

(
uj,ls+1 − uj,ls

mσk∗
s+1

−
uj,ls − uj,ls−1

mσk∗s

)
,
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where uj,l0 = uj,lN+1
= 0, and for s = 2, · · · , N

Λ
∂M∗

j,Γ

k∗
s

(u∂M∗
j,Γ

) = puj,k∗
s
−Ayy

q

mσk∗s

(
uj,k∗

s+1
− uj,k∗

s

mσs

−
uj,k∗

s
− uj,k∗

s−1

mσs−1

)
.

Note that uj,k∗
1
= uj,k∗

N+1
= 0 because of the homogeneous boundary condi-

tion on ∂Ω. The unit normal nσlj is oriented from Ωj to Ωi.
Equations (7)-(9) correspond to approximations of the equation after in-

tegration on Mj , M
∗
j and ∂M∗

j ; equations (10) and (11) stem from the trans-
mission condition on ∂Mj,Γ and ∂M∗

j,Γ ; equation (12) corresponds to the
Dirichlet boundary condition on ∂Ω.

The DDFV optimized Schwarz algorithm performs for an arbitrary initial
guess h0T j

∈ R∂Mj,Γ∪∂M∗
j,Γ , j ∈ {1, 2} and l = 1, 2, . . . the following steps:

• Compute for j = 1, 2 the solutions (ul+1
T j

, Ψ l+1
T j

) ∈ RTj × R∂M∗
j,Γ of

LT j

Ωj ,Γ
(ul+1

T j
, Ψ l+1

T j
, fT j , h

l
T j
) = 0. (13)

• Evaluate for i, j ∈ {1, 2}, j ̸= i the new interface values hl+1
T j

by

hl+1
j,l = −

(
Ad∇Dul+1

T i
,nσli

)
+ Λ

∂Mj,Γ
l (ul+1

∂Mi,Γ
), ∀l ∈ ∂Mi,Γ , (14a)

hl+1
j,k∗ = −ψl+1

i,k∗ + Λ
∂M∗

j,Γ

k∗ (ul+1
∂M∗

i,Γ
), ∀k∗ ∈ ∂M∗

i,Γ . (14b)

Theorem 1 (Well-posedness of subdomain problems). For any fT j ∈
RT j and hT j ∈ R∂Mj,Γ∪∂M∗

j,Γ , there exists a unique solution (uT j , ΨT j ) ∈
RTj × R∂Mj,Γ∪∂M∗

j,Γ of the linear system LT j

Ωj ,Γ
(uT j , ΨT j , fT j , hT j ) = 0.

Proof. By linearity, it is sufficient to prove that if LT j

Ωj ,Γ
(uT j , ΨT j , 0, 0) = 0,

then uT j = 0 and ΨT j = 0. We multiply equation (7) bymkuj,k and equations
(8)-(9) by mk∗uj,k∗ and sum the results over all control volumes in Mj and
M∗j ∪ ∂M∗

j,Γ . Reordering the different contributions over all diamond cells,
we obtain

2
∑
d∈D

mD(Ad∇DuT j ,∇DuT j ) + (Λ∂MΓ (u∂Mj,Γ ), u∂Mj,Γ )

+ (Λ∂M∗
Γ (u∂M∗

j,Γ
), u∂M∗

j,Γ
) +

∑
k∈Mj

mkηku
2
j,k +

∑
k∗∈M∗

j

mk∗ηk∗u2j,k∗ = 0.

The result thus follows by discrete Poincaré inequalities (see for example [2])
and the properties of Λ∂MΓ and Λ∂M∗

Γ .

Theorem 2 (Convergence of the DDFV Schwarz algorithm). The
solution of the Schwarz algorithm (13)-(14) converges as l goes to ∞ to the
solution of the DDFV scheme on the entire domain Ω.
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Proof. We follow the ideas of [5]: we first rewrite the DDFV scheme for the
problem on Ω as the limit of the Schwarz algorithm. To this end, we introduce
new unknowns near the boundary Γ , see Figure 1:

• ∀ xk ∈ Ωj and xk∗ ∈ Ωj , we set u∞j,k = uk and u∞j,k∗ = uk∗ ,
• ∀ xk ∈ ∂Ω and xk∗ ∈ ∂Ω, we set u∞j,k = 0 and u∞j,k∗ = 0,

• ∀ xl ∈ Γ , choose u∞j,l in such a way thatAj∇Du∞T j
·nσkj = −Ai∇Du∞T i

·nσki :

u∞j,l = u∞i,l =
mσkj

mσki(
Ajmσki

+Aimσkj

)
(nσkj ,nσkj )

[
ukj

(Ajnσkj
,nσkj )

mσkj

+ uki

(Ainσkj ,nσkj )

mσki

+
ul∗ − uk∗

mσ
(Ai −Aj) (nσ∗k∗

j
,nσkj )

]
,

• ∀ xk∗ ∈ Γ , k∗ = k∗
1 ∪k∗

2 with k∗
j ∈ ∂M∗

j,Γ , choose u
∞
j,k∗ = u∞i,k∗ = uk∗ and

ψ∞
j,k∗=−ψ∞

i,k∗ = − 1

mσk∗

∑
D∈Dk∗

j

mσ∗

(
Ad∇Du∞T j

,nσ∗k∗
j

)
+

mk∗
j

mσk∗
(ηk∗uk∗ − fk∗)

=
1

mσk∗

∑
D∈Dk∗

i

mσ∗
(
Ad∇Du∞T i

,nσ∗k∗
i

)
−

mk∗
i

mσk∗
(ηk∗uk∗ − fk∗).

By linearity, it suffices to prove convergence of the DDFV Schwarz algorithm
(7) to 0. We have constructed (u∞T j

, ψ∞
T j
) from the solution uT of the DDFV

scheme on Ω such that

LT j

Ωj ,Γ
(u∞T j

, ψ∞
T j
, fT j , h

∞
T j
) = 0.

Observe that the errors el+1
T j

= ul+1
T j

− u∞T j
, Ψ l+1

T j
= ψl+1

T j
− ψ∞

T j
satisfy

LT j

Ωj ,Γ
(el+1

T j
, Ψ l+1

T j
, 0,H l

T j
) = 0,

with

∀ k∗ ∈ ∂M∗
i,Γ , H l

j,k∗ = −Ψ l
i,k∗ + Λ

∂M∗
i,Γ

k∗ (elT i
),

∀ l ∈ ∂Mi,Γ , H l
j,l = −(Ad∇DelT i

,nσli) + Λ
∂Mi,Γ
l (elT i

).

An a priori estimate using discrete duality leads to

2
∑
d∈Dj

md(Ad∇Del+1
T j

,∇Del+1
T j

)

−
∑

l∈∂Mj,Γ

mσl
(Ad∇Del+1

T j
,nσlj )e

l+1
j,l −

∑
k∗∈∂M∗

j,Γ

mσk∗Ψ
l+1
j,k∗e

l+1
j,k∗

+
∑

k∈Mj

mkηk(e
l+1
j,k )2 +

∑
k∗∈M∗

j∪∂M∗
j,Γ

mk∗ηk∗(el+1
j,k∗)2 = 0.
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Using the scalar product defined by (Λ∂MΓ )−1, we get

−
∑

l∈∂Mj,Γ

mσl(Ad∇Del+1
T j
,nσlj )e

l+1
j,l =

(
(AD∇Del+1

T j
,nj), Λ

∂MΓ (el+1
∂Mj,Γ

)
)
(Λ∂MΓ )−1

,

with nj the unit outward normal of Ωj . The formula −4ab = (a−b)2−(a+b)2

now implies

−
∑

l∈∂Mj,Γ

mσl(Ad∇Del+1
T j

,nσlj )e
l+1
j,l

=
1

4

∥∥∥−(AD∇Del+1
T j

,nj) + Λ∂MΓ(el+1
∂Mj,Γ

)
∥∥∥2

(Λ∂MΓ )−1

− 1

4

∥∥∥(AD∇Del+1
T j

,nj) + Λ∂MΓ (el+1
∂Mj,Γ

)
∥∥∥2

(Λ∂MΓ )−1
.

Using the Ventcell transmission condition, we now obtain

−
∑

l∈∂Mj,Γ

mσl(Ad∇Del+1
T j

,nσlj )e
l+1
j,l

=
1

4

∥∥∥−(AD∇Del+1
T j

,nj) + Λ∂MΓ (el+1
∂Mj,Γ

)
∥∥∥2

(Λ∂MΓ )−1

− 1

4

∥∥∥−(AD∇DelT i
,ni) + Λ∂MΓ (el∂Mi,Γ

)
∥∥∥2

(Λ∂MΓ )−1
.

In a same way, we also obtain

−
∑

k∗∈∂M∗
j,Γ

mσk∗Ψ
l+1
j,k∗e

l+1
j,k∗ =

1

4

∥∥∥−Ψ l+1
T j

+ Λ∂M∗
Γ (el+1

∂M∗
j,Γ

)
∥∥∥2
(Λ∂M∗

Γ )−1

−1

4

∥∥∥−Ψ l
T i

+ Λ∂M∗
Γ (el∂M∗

i,Γ
)
∥∥∥2
(Λ∂M∗

Γ )−1
.

Summing over l and j, the boundary terms cancel and we obtain the estimate

2

lmax−1∑
l=0

∑
j=1,2

∑
d∈Dj

md(Ad∇Del+1
T j

,∇Del+1
T j

)

+

lmax−1∑
n=0

∑
j=1,2

∑
k∈Mj

mkηk(e
l+1
j,k )2 +

lmax−1∑
n=0

∑
j=1,2

∑
k∗∈M∗

j∪∂M∗
j,Γ

mk∗ηk∗(el+1
j,k∗)2

≤
∑
j=1,2

1

4

∥∥∥−(AD∇De0T j
,nj) + Λ∂MΓ (e0∂Mj,Γ

)
∥∥∥2
(Λ∂MΓ )−1

+
∑
j=1,2

1

4

∥∥∥−Ψ0
T j

+ Λ∂M∗
Γ (e0∂M∗

j,Γ
)
∥∥∥2
(Λ∂M∗

Γ )−1
.
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This shows that the total energy stays bounded as the iteration l goes to
infinity, and hence the algorithm converges.

3 Numerical experiments

We use the domain Ω = (−1, 1) × (0, 1) with the two subdomains x > 0
and x < 0. For the first experiment, we choose the data such that the exact
solution is u(x, y) = cos(2.5πx) cos(2.5πy), where we set η := 1 and

A(x, y) :=

(
1.5 0.5
0.5 1.5

)
for x < 0, and A(x, y) :=

(
1.5 0.5
0.5 1

)
for x > 0.

Starting with a random initial guess, Figure 2 shows the convergence history
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Fig. 2 Convergence history
||uT i

n −uT i ||2
||uT i ||2

for non-conforming square meshes (left) and a

conforming triangle-square mesh configuration (right).

of the algorithms using the Robin or Ventcell transmission conditions. For a
fair comparison, the parameters p and q were numerically chosen to obtain
the best convergence rate in each case. On the left, we used a non-conforming
32×32 square mesh on Ω1 and a 48×48 square mesh on Ω2 with p = 11.2 and
q = 0.007 for the Ventcell transmission condition, and p = 28 and q = 0 for
the Robin one. On the right, we used a conforming triangle-square mesh on
Ω1-Ω2 with p = 11.6 and q = 0.014 for the Ventcell transmission condition,
and p = 23.5 and q = 0 for the Robin one. We clearly see that the algorithm
converges much faster with the Ventcell condition.

We next simulate the error equations, i.e. using homogeneous data, for a
conforming square mesh (2i×2i squares on Ωj , j = 1, 2). We start again with
a random initial guess. On the left in Figure 3, we show the p that worked
best as h is refined, and on the right the corresponding q. We also plot the
asymptotic parameters from [3], which shows that the optimized parameters
of the DDFV discretization behave asymptotically as expected.

In conclusion, we have shown how to discretize an optimized Schwarz al-
gorithm with Ventcell transmission conditions using discrete duality finite
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Fig. 3 Behavior of the numerically optimized parameter p on the left, q on the right.

volumes. Using energy estimates, we proved that the algorithm converges,
and we showed in numerical experiments that the convergence is substan-
tially faster than for Robin transmission conditions. We also showed that
the optimized parameters behave asymptotically as expected from a contin-
uous analysis. We are currently working on an asymptotic analysis for the
optimized parameters and associated contraction factor of the algorithm.
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(OO2). Ph.D. thesis, Université Paris 13, France (1998)


