
Partially Updated Restricted Additive
Schwarz Preconditioner

Laurent Berenguer1 and Damien Tromeur-Dervout1

Introduction

The solution of differential equations with implicit methods requires the solu-
tion of a nonlinear problem at each time step. We consider Newton-Krylov [9,
Chapter 3] methods to solve these nonlinear problems: the linearized system
of each Newton iteration of each time step is solved by a Krylov method.
Generally speaking, the most time-consuming part of the numerical simula-
tion is the solution of the sequence of linear systems by the Krylov method.
Then, providing a good preconditioner is a critical point: a balance must
be found between the ability of the preconditioner to reduce the number of
Krylov iterations, and its computational cost. The method that combines a
Newton-Krylov method with a Schwarz domain decomposition preconditioner
is called Newton-Krylov-Schwarz (NKS) [4]. In this paper, we deal with the
Restricted Additive Schwarz (RAS) preconditioner [5]. We propose to freeze
this preconditioner for a few time steps, and to partially update it. Here, the
partial update of the preconditioner consists in recomputing some parts of
the preconditioner associated to certain subdomains, keeping the other ones
frozen. These partial updates improve the efficiency and the longevity of the
frozen preconditioner. Furthermore, they can be computed asynchronously
in order to improve the parallelism.

The remainder of this paper is organized as follows: Section 1 presents
the partial update of the Restricted Additive Schwarz (RAS) preconditioner.
In Section 2, we propose to compute this partial update asynchronously on
additional devices in order to achieve a parallel algorithm. The third section
is devoted to numerical experiments on a reaction-diffusion problem. They

Université de Lyon, Université Lyon 1, CNRS, Institut Camille Jordan

(umr5208), 69622 Villeurbanne, France laurent.berenguer@univ-lyon1.fr ·
damien.tromeur-dervout@univ-lyon1.fr

1

2 Laurent Berenguer and Damien Tromeur-Dervout

show that the partially updated preconditioner is more robust than the frozen
preconditioner, and that a superlinear speed-up can be achieved.

1 The partial update of the RAS preconditioner

We consider ordinary differential equations of the form ẋ = f(x, t) where
x ∈ Rn is the solution and the function f from Rn+1 to Rn is nonlinear.
The problem ẋ = f(x, t) is solved for a given initial condition x(0) = x0

and suitable boundary conditions. If an implicit method is used for the time
integration, then a nonlinear problem of the form F (xl, tl) = 0 must be
solved in xl at each time step tl. This nonlinear problem is generally solved
by Newton-like methods that require the solution of linear systems of the
form

J(xl
k, t

l)δxl
k = −F (xl

k, t
l) (1)

where the subscript k stands for the number of the Newton iteration,
J(xl

k, t
l) ∈ Rn×n is the Jacobian matrix of F (·, tl) at the solution xl

k. The
Newton-Krylov method can be viewed as an inexact Newton method if Eq.
(1) is solved by a Krylov method. A good preconditioning method is needed to
accelerate the convergence of Krylov methods. The preconditioning matrix
M l

k should approximate J(xl
k, t

l) and its inverse must be computed easily.
Preconditioners based on domain decomposition methods are often used be-
cause their application to vectors requires only the solution of subdomain
problems. The domain of n unknowns is split in N overlapping subdomains.
Each subdomain i has ni unknowns if we include the overlap, and ñi if we
exclude the overlap (i.e. n =

∑N
i ñi). Let Ri ∈ Rni×n denote the operator

that restricts a vector to the ith subdomain, including the overlap. We also
denote by R̃i ∈ Rni×n the restriction operator to the ith subdomain that ex-
cludes the overlap by setting to zero the lines corresponding to the overlap.
For simplicity of notation, we write J instead of J(x, t) when no confusion
can arise. Thus, the RAS preconditioner of the matrix J is given by Eq. (2).

M−1
RAS =

N∑
i=1

R̃T
i

(
RiJR

T
i

)−1
Ri (2)

In Eq. (2), we assumed that the local Jacobian matrices Ji = RiJR
T
i

are invertible. This is not necessary to compute explicitly the matrices J−1
i

because the Krylov method requires only the application of the preconditioner
to vectors. This application is computed by the parallel solution of N local
linear systems. In the following, we solve this local linear system using the
LU factorizations of the matrices Ji.

Several methods have been proposed to optimize the solution of a sequence
of slightly changing linear systems, and all of them consist in reusing some

Partially Updated Restricted Additive Schwarz Preconditioner 3

computations done at the previous linear systems. Then, several ways to reuse
the Krylov subspace have been considered. An overview of these techniques
is given in [10] but it is worth mentioning that the information provided by
the Krylov subspace can be used to update a preconditioner. Hence, in [7]
a preconditioner based on deflation is updated at each restart of GMRES.
In order to save computational time, we consider the reuse of the same RAS
preconditioner for a few successive linear systems: this frozen preconditioner
is called Lagged RAS (LRAS) in the following. In this case, it may be relevant
to update the preconditioner from one linear system to another, instead of re-
computing it. Several ways to update a preconditioning matrix have already
been considered. It has been proposed in [3] to update the preconditioner,
adding a low rank matrix that corresponds to the quasi-Newton update. The
update of a factorized preconditioner has also been considered: the update
AINV preconditioner has been studied in [2] for a sequence of diagonally
shifted matrices. In [13], an algebraic formula is derived to update the ILU
preconditioner from the difference of two successive linear operators. This
idea has been extended to Jacobian-free methods in [6]. The frozen precondi-
tioner is expected to become less and less efficient from one linear system to
another. Then, a recomputation of the preconditioner may be needed to pre-
vent convergence failures of the Krylov method. It is a difficult task to decide
when a frozen preconditioner needs recomputed, but two heuristic criteria
are often used:

• The preconditioner can be recomputed if the previous linear system has
needed more than Kmax Krylov iterations.

• The preconditioner can also be updated every L linear systems.

In this paper, we choose the first approach that seems more flexible: it can
allow to save numerous of unnecessary global updates. On the other hand, the
number of needed Krylov iterations can vary during the simulation because it
does not only depend on the age of the preconditioner. Then, to be optimal,
Kmax should be adapted during the simulation. However, this topic exceeds
the scope of this paper.

When LRAS is used, the update of the preconditioner is global: all the local
LU factorizations are computed simultaneously. We can extend this idea to
a partial update: only some parts of the preconditioner are updated. Hence,
the preconditioner can be written as in Eq. (3), where AsRAS stands for
Asynchronous Restricted Additive Schwarz. The preconditioner is now com-
pounded of local Jacobian matrices evaluated at different Newton iterations
or time steps. It is worth pointing out that if ti = t and ki = k for i = 1 . . . N
then M−1

AsRAS = M−1
LRAS .

M−1
AsRAS =

N∑
i=1

R̃T
i Ji(x

li
ki
, tli)−1Ri (3)

4 Laurent Berenguer and Damien Tromeur-Dervout

In order to avoid idle time, asynchronous solvers have been studied for lin-
ear and nonlinear problems [8, 12]. The disadvantage of asynchronous solvers
lies in the fact that one needs to make extra assumptions on the problem and
its splitting to ensure the convergence. Here, the updates of the local parts of
the preconditioner are asynchronous, but the communications between sub-
domains are synchronous. Then, the theoretical framework of Newton-Krylov
solvers applies directly: the exact solution of preconditioned linear systems is
the same regardless of the preconditioning matrix. That being said, Krylov
methods approximate the solution to a given tolerance, the digits of the so-
lution beyond this tolerance might differ from one preconditioner to another.

One can expect that the partial update allows to save Krylov iterations
during the simulation. Numerical results will confirm this idea from a global
point of view, but we do not assume that every single partial update improves
the condition number of the linear systems.

The sequential implementation of the AsRAS preconditioner is straight-
forward. The implementation on a parallel computer is a much more difficult
task because idle time may arise when only some processors compute the LU
factorization. To circumvent this difficulty, in the next section we propose to
dedicate additional processes to the LU factorizations.

2 Parallel implementation of the asynchronous RAS
preconditioner

The method presented in the previous section does not seem suitable for
parallel computing because the load is not balanced: some of the processors
will have to wait while the other ones compute the LU factorizations since
the Krylov method entails synchronizations. In the following, we present an
efficient algorithm where the LU factorizations are computed by processors
that are not in charge of a subdomain.

The key point of the asynchronous partial update of the RAS precondi-
tioner is to define two kinds of tasks that communicate: the first one is the
solution of a subdomain problem (i.e. the classical Newton-Krylov method).
The second one is the LU factorizations of local Jacobian matrices. Then, in
order to solve the physical problem, one should assign most of the CPU cores
to the first task.

Algorithm 1 describes how to implement the method in a client-server
approach. The client processes are those assigned to subdomains, while the
server processes are devoted to the computation of LU factorizations. The
client processes must be able to continue the computation between the send-
ing of the local Jacobian matrix and the reception of the factorized matrix.
The reception of the factorized matrix is the partial update since the new LU
factorization is received in the memory space of the previous one. In our MPI
implementation, the communication pattern is the following: client processes

Partially Updated Restricted Additive Schwarz Preconditioner 51

Algorithm 1 Asynchronous update of the preconditioner

1: // Client process

2: for each time step do

3: // Newton iterations:

4: repeat

5: if a LU factorization is available,
partially update M−1

AsRAS

6: if global update then

7: M−1

AsRAS
=

∑
N

i=1
R̃T

i
J−1

i
Ri

8: end if

9: Krylov method to solve
Jδx = −F (x) preconditioned by
M−1

AsRAS

10: x← x+ δx
11: if needed, send J
12: until convergence
13: end for

1: // Server process

2: repeat

3: receive the matrix
4: compute the LU factorization
5: send the factorization
6: until the end of the integration

check if the server is ready to receive the local Jacobian matrix before they
send it. This checking is implemented using MPI Test. Likewise, client pro-
cesses check if the LU factorization is ready before they start the reception.
The reception can be done between two Newton iterations or even between
two Krylov iterations if the Krylov method allows variable preconditioners
[11]. Finally, Algorithm 1 can be viewed as an improvement of LRAS: both
algorithms are equivalent if no processes are assigned to the partial update
of the preconditioner. As stated above, there are more client processes than
server processes. As a consequence, only few partial updates can be computed
simultaneously. Then, one needs to decide in which order the requests will be
treated. In the remainder of this paper, we limit ourselves to a cyclic update:
we first update the first subdomains, then the second ones and so on. This
approach is not optimal, because it does not update more frequently the sub-
domains where highly nonlinear phenomena appear. Since we proposed an
asynchronous implementation of AsRAS in Algorithm 1, we cannot assume
that the partial updates will be received it time to prevent convergence fail-
ure of the Krylov method. That is the reason why, there is a global restart
in Algorithm 1, step 7, as in classical LRAS implementations.

3 Numerical tests

This section presents some tests that highlight the behavior of the methods.
The computer cluster used for the numerical experiments is an SGI Altix XE
1300, with two six-cores Intel Xeon 5650 per node. The PETSc library [1]
was used for the implementation. Generally speaking, one should avoid the

6 Laurent Berenguer and Damien Tromeur-Dervout

exchange of factorized matrix through the network, then a MPI library that
performs efficient intranode communications is required. The tasks must be
distributed in such a way that client processes and their server share some
memory. For example, one core per processor hosts the server process and
the other cores host its client processes. We compare the behavior of AsRAS
to LRAS for a reaction-diffusion problem given in Eq. (4). The domain is the
unit square with periodic boundary conditions.{

u̇− α1∆u=A+ u2v − (B + 1)u
v̇ − α2∆v=Bu− u2v

(4)

We consider the following parameters:

• The domain is discretized in 100 × 100 points, using a five-point stencil
and decomposed in 16 subdomains.

• The problem is solved for t ∈ [0, 10] using the backward Euler scheme with
a variable time step. The solution at t = 0 is u(x, y) = A+ 10−2 × r(x, y)
and v(x, y) = A/B+10−2 × r(x, y) where r(x, y) ∈ [−0.5, 0.5] are random
numbers.

• The coefficients of the reaction are A = 3.5, B = 12, α1 = 1 × h2 and
α2 = 2.6× h2, where h is the spatial length scale.

• The nonlinear solver is a Newton method with line search where Jacobian
matrices are approximated by finite differences. The linear solver is a right-
preconditioned BiCGSTAB [14].

• The RAS preconditioner, with an overlap of one, is recomputed if the
number of Krylov iterations of the previous linear system has exceedKmax.

• LRAS has run on 16 cores, and AsRAS on 20 cores (16 cores associated
to subdomains, and 4 cores dedicated to the partial update of the precon-
ditioner).

Let us remark that, because of the asynchronous behaviour of our implemen-
tation of AsRAS, the number of Krylov iterations and the last digits of the
solution may vary from one run to another. That is the reason why the exe-
cution time and the number of Krylov iterations given in Figure 1 and 2 are
averages over five runs. The cumulate number of Krylov iterations is given
in Fig. 1. In both cases, the number of total Krylov iterations increases with
respect to Kmax, that is to say when the number of global updates decreases.
However, the partial update limits this increase. The total execution times
are plotted in Fig. 2. The minimum wall time is given by the best balance
between the Krylov iterations and the computational cost of the precondi-
tioner. The minimum wall time is 2.46 for LRAS and 2.15 for AsRAS. If we
compare these minimum wall times, the speedup is 1.14 which is lower than
the theoretical linear speedup 1.25. On the other hand, if we consider all the
tests, the average speedup is about 1.5 because AsRAS is less sensitive to
Kmax than LRAS. In practice, one will solve the problem only once with a
poor approximation of the best Kmax. In that case a superlinear speedup can
be obtained.

Partially Updated Restricted Additive Schwarz Preconditioner 7

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30 35 40 45 50

K
ry

lo
v

ite
ra

tio
ns

Kmax

LRAS
AsRAS

Fig. 1 Total number of Krylov itera-

tions (averages over five runs)

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30 35 40 45 50

tim
e

(s
)

Kmax

LRAS
AsRAS

Fig. 2 Wall times in seconds (averages

over five runs)

4 Conclusions

The utilization of domain decomposition preconditioners allows us to update
only certain parts of the preconditioner, keeping the other ones constant.
In the context of parallel computing, this partial update can be computed
asynchronously, that is to say that the time-stepper computations are not
stopped if the update is not available. Finally, numerical results showed that
superlinear speedups can be obtained by adding processes dedicated to the
LU factorizations. Furthermore, the preconditioner is continually updated
which makes the results less sensitive to the frequency of global update. In
this paper, all subdomain parts of the preconditioner are successively up-
dated, but it would be relevant to update more often the LU factorizations
associated to subdomains with high local nonlinearities. Then, the AsRAS
preconditioner should benefit from a numerical criterion that helps to choose
which subdomains need the more an update.

Acknowledgements

This work has been supported by the French National Agency of Research
(project ANR-MONU12-0012 H2MNO4), and the région Rhône-Alpes. Au-
thors also thank the Center for the Development of Parallel Scientific Com-
puting (CDCSP) of the University of Lyon 1 for providing us with computing
resources.

References

[1] Satish Balay, Jed Brown, Kris Buschelman, Victor Eijkhout, William D.
Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes,

8 Laurent Berenguer and Damien Tromeur-Dervout

Barry F. Smith, and Hong Zhang. PETSc users manual. Technical
Report ANL-95/11 - Revision 3.3, Argonne National Laboratory, 2012.

[2] Michele Benzi and Daniele Bertaccini. Approximate inverse precon-
ditioning for shifted linear systems. BIT Numerical Mathematics,
43(2):231–244, 2003.

[3] L Bergamaschi, R Bru, A Mart́ınez, and M Putti. Quasi-Newton pre-
conditioners for the inexact Newton method. Electronic Transactions on
Numerical Analysis, 23:76–87 (electronic), 2006.

[4] Xiao-Chuan Cai, William D Gropp, David E Keyes, and Moulay D
Tidriri. Newton-Krylov-Schwarz methods in CFD. In Proceedings of
the International Workshop on Numerical Methods for the Navier-Stokes
Equations, pages 17–30, Braunschweig, 1995. Vieweg.

[5] Xiao-Chuan Cai and Marcus Sarkis. A restricted additive Schwarz pre-
conditioner for general sparse linear systems. SIAM J. Sci. Comput.,
21(2):792–797 (electronic), 1999.

[6] Jurjen Duintjer Tebbens and Mirosla Tuma. Preconditioner updates for
solving sequences of linear systems in matrix-free environment. Numer.
Linear Algebra Appl., 17:997–1019, 2010.

[7] Jocelyne Erhel, Kevin Burrage, and Bert Pohl. Restarted gmres precon-
ditioned by deflation. Journal of computational and applied mathemat-
ics, 69(2):303–318, 1996.

[8] Andreas Frommer and Daniel B. Szyld. On asynchronous iterations. J.
Comput. Appl. Math., 123(1-2):201–216, 2000. Numerical analysis 2000,
Vol. III. Linear algebra.

[9] C. T. Kelley. Solving nonlinear equations with Newton’s method, vol-
ume 1 of Fundamentals of Algorithms. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2003.

[10] Michael L Parks, Eric De Sturler, Greg Mackey, Duane D Johnson, and
Spanda Maiti. Recycling Krylov subspaces for sequences of linear sys-
tems. SIAM Journal on Scientific Computing, 28(5):1651–1674, 2006.

[11] Youcef Saad. A flexible inner-outer preconditioned GMRES algorithm.
SIAM J. Sci. Comput., 14(2):461–469, 1993.

[12] Pierre Spiteri, Jean-Claude Miellou, and Didier El Baz. Parallel asyn-
chronous Schwarz and multisplitting methods for a nonlinear diffusion
problem. Numer. Algorithms, 33(1-4):461–474, 2003. International Con-
ference on Numerical Algorithms, Vol. I (Marrakesh, 2001).

[13] Jurjen Duintjer Tebbens and Miroslav Tuma. Efficient preconditioning
of sequences of nonsymmetric linear systems. SIAM Journal on Scientific
Computing, 29(5):1918–1941, 2007.

[14] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging
variant of Bi-CG for the solution of nonsymetric linear systems. SIAM
J. Sci. Stat. Comput., 13:631–644, 1992.

