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1 Introduction

The Isogeometric Analysis (IGA) was introduced by Hughes et al. [2005]
and has since been developed intensively, see also monograph Cottrell et al.
[2009], is a very suitable framework for representing and discretizing Partial
Differential Equations (PDEs) on surfaces. We refer the reader to the survey
paper by Dziuk and Elliot [2013] where different finite element approaches
to the numerical solution of PDEs on surfaces are discussed. Very recently,
Dedner et al. [2013] have used and analyzed the Discontinuous Galerkin (DG)
finite element method for solving elliptic problems on surfaces. The IGA of
second-order PDEs on surfaces has been introduced and numerically studied
by Dede and Quarteroni [2012] for the single-patch case. Brunero [2012] pre-
sented some discretization error analysis of the DG-IGA applied to plane (2d)
diffusion problems that carries over to plane linear elasticity problems which
have recently been studied numerically in Apostolatos et al. [2013]. Evans and
Hughes [2013] used the DG technology in order to handle no-slip boundary
conditions and multi-patch geometries for IGA of Darcy-Stokes-Brinkman
equations. The efficient generation of the IGA equations, their fast solution,
and the implementation of adaptive IGA schemes are currently hot research
topics. The use of DG technologies will certainly facilitate the handling of
the multi-patch case.

In this paper, we use the DG method to handle the IGA of diffusion prob-
lems on closed or open, multi-patch NURBS surfaces. The DG technology
easily allows us to handle non-homogeneous Dirichlet boundary conditions
and multi-patch NURBS spaces which can be discontinuous across the patch
boundaries. We also derive discretization error estimates in the DG- and L2-
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norms. Finally, we present some numerical results confirming our theoretical
estimates.

2 Surface Diffusion Model Problem

Let us assume that the physical (computational) domain Ω, where we are
going to solve our diffusion problem, is a sufficiently smooth, two-dimensional
generic (Riemannian) manifold (surface) defined in the physical space R3 by
means of a smooth multi-patch NURBS mapping that is defined as follows.
Let TH = {Ω(i)}Ni=1 be a partition of our physical computational domain Ω

into non-overlapping patches (sub-domains) Ω(i) such that Ω =
⋃N
i=1Ω

(i)

and Ω(i) ∩ Ω(j) = ∅ for i 6= j, and let each patch Ω(i) be the image of
the parameter domain Ω̂ = (0, 1)2 ⊂ R2 by some NURBS mapping G(i) :

Ω̂ → Ω(i) ⊂ R3, ξ = (ξ1, ξ2) 7→ x = (x1,x2,x3) = G(i)(ξ), which can be
represented in the form

G(i)(ξ1, ξ2) =

n1∑
k1=1

n2∑
k2=1

P
(i)
(k1,k2)

R̂
(i)
(k1,k2)

(ξ1, ξ2) (1)

where {R̂(i)
(k1,k2)

} are the bivariate NURBS basis functions, and {P(i)
(k1,k2)

} are

the control points, see Cottrell et al. [2009] for a detailed description.
Let us now consider a diffusion problem on the surface Ω, the weak for-

mulation of which can be written as follows: find u ∈ Vg such that

a(u, v) = 〈F, v〉 ∀v ∈ V0, (2)

with the bilinear and linear forms are given by the relations

a(u, v) =

∫
Ω

α∇Ωu · ∇Ωv dΩ and 〈F, v〉 =

∫
Ω

fv dΩ +

∫
ΓN

gNv dΓ,

respectively, where ∇Ω denotes the so-called tangential or surface gradient,
see e.g. Definition 2.3 in Dziuk and Elliot [2013] for its precise description.
The hyperplane Vg and the test space V0 are given by Vg = {v ∈ V = H1(Ω) :
v = gD on ΓD} and V0 = {v ∈ V : v = 0 on ΓD} for the case of an open
surface Ω with the boundary Γ = ΓD∪ΓN such that meas1(ΓD) > 0, whereas
Vg = V0 = {v ∈ V :

∫
Ω
v dΩ = 0} in the case of a pure Neumann problem

(ΓN = Γ ) as well as in the case of closed surfaces unless there is a reaction
term. In case of closed surfaces there is of course no integral over ΓN in the
linear functional on the right-hand side of (2). In the remainder of the paper,
we will mainly discuss the case of mixed boundary value problems on an open
surface under appropriate assumptions (e.g., meas1(ΓD) > 0, α - uniformly

positive and bounded, f ∈ L2(Ω), gD ∈ H
1
2 (ΓD) and gN ∈ L2(ΓN ) ) ensuring
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existence and uniqueness of the solution of (2). For simplicity, we assume
that the diffusion coefficient α is patch-wise constant, i.e. α = αi on Ω(i) for
i = 1, 2, . . . , N . The other cases including the reaction-diffusion case can be
treated in the same way and yield the same results like presented below.

3 DG-IGA Schemes and their Properties

The DG-IGA variational identity

aDG(u, v) = 〈FDG, v〉 ∀v ∈ V = H1+s(TH), (3)

which corresponds to (2), can be derived in the same way as their FE counter-
part, where H1+s(TH) = {v ∈ L2(Ω) : v|Ω(i) ∈ H1+s(Ω(i)), ∀ i = 1, . . . , N}
with some s > 1/2. The DG bilinear and linear forms in the Symmetric In-
terior Penalty Galerkin (SIPG) version, that is considered throughout this
paper for definiteness, are defined by the relationships

aDG(u, v) =

N∑
i=1

∫
Ω(i)

αi∇Ωu · ∇Ωv dΩ

−
∑

γ∈EI∪ED

∫
γ

({α∇Ωu · n}[v] + {α∇Ωv · n}[u]) dΓ

+
∑

γ∈EI∪ED

δ

hγ

∫
γ

αγ [u][v] dΓ (4)

and

〈FDG, v〉 =

∫
Ω

fvdΩ +
∑
γ∈EN

∫
γ

gNv dΓ

+
∑
γ∈ED

∫
γ

αγ

(
−∇Ωv · n +

δ

hγ
v

)
gD dΓ, (5)

respectively, where the usual DG notations for the averages {v} = 1/2(vi +
vj), jumps [v] = vi − vj and αγ = (αi + αj)/2 on EI , with the corresponding
modifications {v} := vi =: [v] and αγ = αi on ED, are used, where i and j
correspond to the indices of the patches to which the edge γ belongs, see,
e.g., Rivière [2008]. The sets EI , ED and EN denote the sets of edges γ of the
patches belonging to ΓI = ∪ ∂Ω(i) \ {ΓD ∪ ΓN}, ΓD and ΓN , respectively,
whereas hγ is the mesh-size on γ. The penalty parameter δ must be chosen
such that the ellipticity of the DG bilinear on the DG space Vh can be ensured.
The relationship between our model problem (2) and the DG variational
identity (3) is given by the consistency theorem that can easily be verified.
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Theorem 1. If the solution u of the variational problem (2) belongs to Vg ∩
H1+s(TH) with some s > 1/2, then u satisfies the DG variational identity
(3). Conversely, if u ∈ H1+s(TH) satisfies (3), then u is the solution of our
original variational problem (2).

Now we consider the finite-dimensional Multi-Patch NURBS subspace

Vh = {v ∈ L2(Ω) : v|Ω(i) ∈ V ih(Ω(i)), i = 1, . . . , N}

of our DG space V, where V ih(Ω(i)) = span{R(i)
k } denotes the space of NURBS

functions on each single-patch Ω(i), i = 1, . . . , N , and the NURBS basis

functions R
(i)
k = R̂

(i)
k ◦ G(i)−1

are given by the push-forward of the NURBS

functions R̂
(i)
k to their corresponding physical sub-domains Ω(i) on the surface

Ω. Finally, the DG scheme for our model problem (2) reads as follows: find
uh ∈ Vh such that

aDG(uh, vh) = 〈FDG, vh〉, ∀vh ∈ Vh. (6)

For simplicity of our analysis, we assume matching meshes, see, e.g., Kleiss
et al. [2012]. Using special trace and inverse inequalities in the NURBS spaces
Vh and Young’s inequality, for sufficiently large DG penalty parameter δ, we
can easily establish Vh coercivity and boundedness of the DG bilinear form
with respect to the DG energy norm

‖v‖2DG =

N∑
i=1

αi‖∇Ωvi‖2L2(Ω(i)) +
∑

γ∈EI∪ED

αγ
δ

hγ
‖[v]‖2L2(γ)

, (7)

yielding existence and uniqueness of the DG solution uh ∈ Vh of (6) that can
be determined by the solution of a linear system of algebraic equations.

4 Discretization Error Estimates

Theorem 2. Let u ∈ Vg ∩ H1+s(TH) with some s > 1/2 be the solution of
(2), uh ∈ Vh be the solution of (6), and the penalty parameter δ be chosen
large enough . Then there exists a positive constant c that is independent of
u, the discretization parameters and the jumps in the diffusion coefficients
such that the DG-norm error estimate

‖u− uh‖2DG ≤ c
N∑
i=1

αih
2t
i ‖u‖2H1+t(Ω(i)), (8)

holds with t := min{s, p}, where the discretization parameter hi character-
izes the mesh-size in the patch Ω(i), and p always denotes the underlying
polynomial degree of the NURBS.
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Proof. Let us give a sketch of the proof. By the triangle inequality, we have

‖u− uh‖DG ≤ ‖u−Πhu‖DG + ‖Πhu− uh‖DG (9)

with some quasi-interpolation operator Πh : V 7→ Vh such that the first term
can be estimated with optimal order, i.e. by the term on the right-hand side
of (8) with some other constant c. This is possible due to the approximation
results known for NURBS, see, e.g., Bazilevs et al. [2006] and Cottrell et al.
[2009]. Now it remains to estimate the second term in the same way. Using
the Galerkin orthogonality aDG(u − uh, vh) = 0 for all vh ∈ Vh, the Vh
coercitivity of the bilinear form aDG(·, ·), the scaled trace inequality

‖v‖L2(e) ≤ Ch
−1/2
E

(
‖v‖L2(E) + h

1/2+ε
E |v|H1/2+ε(E)

)
, (10)

that holds for all v ∈ H1/2+ε(E), for all IGA mesh elements E, for all edges
e ⊂ ∂E, and for ε > 0, where hE denotes the mesh-size of E or the length of
e, Young’s inequality, and again the approximation properties of the quasi-
interpolation operator Πh, we can estimate the second term by the same term

c
(∑N

i=1 αih
2t
i ‖u‖2H1+t(Ω(i))

)1/2
with some (other) constant c. This completes

the proof of the theorem, cf. Rivière [2008] for the finite element case.

Using duality arguments, we can also derive L2-norm error estimates that
depend on the elliptic regularity. Under the assumption of full elliptic regu-
larity, we get ‖u − uh‖L2(Ω) ≤ c hp+1‖u‖Hp+1(Ω) that is nicely confirmed by
our numerical experiments presented in the next section for p = 1, 2, 3, 4.

5 Numerical Results

The DG IGA method presented in this paper as well as its continuous
Galerkin counterpart have been implemented in the object oriented C++ IGA
library ”Geometry + Simulation Modules” (G+SMO) 1. We present some
first numerical results for testing the numerical behavior of the discretization
error with respect to the mesh parameter h and the polynomial degree p.
Concerning the choice of the penalty parameter, we used δ = 2(p+ 2)(p+ 1).

As a first example, we consider a non-homogeneous Dirichlet problem for
the Poisson equation in the 2d computational domain Ω ⊂ R2 called Yeti’s
footprint, see also Kleiss et al. [2012], where the right-hand side f and the
Dirichlet data gD are chosen such that u(x1, x2) = sin(πx1) sin(πx2) is the
solution of the boundary value problem. The computational domain (left)
and the solution (right) can be seen in Fig. 1. The Yeti footprint consists
of 21 patches with varying open knot vectors Ξ describing the NURBS dis-

1 G+SMO : www.gs.jku.at
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cretization in a short and precise way, see, e.g., Cottrell et al. [2009] for a
detailed definition. The open knot vectors for building the patches 1 to 16
and 21 are given by Ξ = (0, 0, 0, 0.5, 1, 1, 1) in both directions, whereas the
knot vectors for the patches 17 to 20 are given by Ξ1 = (0, 0, 0, 0.5, 1, 1, 1)
and Ξ2 = (0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1). In Fig. 2, the errors in the L2-norm
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Fig. 1 Yeti foot: geometry (left) and DG-IGA solution (right).
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Fig. 2 Yeti foot: L2− and DG-norm errors with polynomial degree p.

and in the DG energy norm (7) are plotted against the degree of freedom
(DOFs) with polynomial degrees from 1 to 4. It can be observed that we
have convergence rates of O(hp+1) and O(hp) respectively. This corresponds
to our theory in Section 4.

In the second example, we apply the DG-IGA to the same Laplace-
Beltrami problem on an open surface as described in Dede and Quar-
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teroni [2012], section 5.1, where Ω is a quarter cylinder represented by
four patches in our computations, see Fig. 3 (left). The open knot vectors
Ξ1 := (0, 0, 0, 1, 1, 1) and Ξ2 := (0, 0, 1, 1) are used to build the patches. The
L2−norm errors plotted on the right side of Fig. 3 exhibit the same numer-
ical behavior as in the plane case of the Yeti foot. The same is true for the
DG-norm.
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Fig. 3 Quarter cylinder: geometry with the solution (left) and L2 norm errors (right).

6 Conclusions

We have developed and analyzed a new method for the numerical approxi-
mation of diffusion problems on open and closed surfaces by combining the
discontinuous Galerkin technique with isogeometric analysis. We refer to our
approach as the Discontinuous Galerkin Isogeometric Analysis (DG-IGA). In
our DG approach we allow discontinuities only across the boundaries of the
patches, into which the computational domain is decomposed, and enforce
the interface conditions in the DG framework. For simplicity of presentation,
we assume that the meshes are matching across the patches, and the solution
u is at least patch-wise in H1+s, i.e. u ∈ H1+s(TH), with some s > 1/2.
The cases of non-matching meshes and low-regularity solution, that are tech-
nically more involved and that were investigated, e.g., by Pietro and Ern
[2012], will be considered in a forthcoming paper. The parallel solution of the
DG-IGA equations can efficiently be performed by Domain Decomposition
(DD) solvers like the IETI technique proposed by Kleiss et al. [2012], see also
Apostolatos et al. [2013] for other DD solvers. The construction and analysis
of efficient solution strategies is currently a hot research topic since, beside
efficient generation techniques, the solvers are the efficiency bottleneck in
large-scale IGA computations.
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