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1 Introduction

In this paper, we are interested in impenetrable surfaces with relatively large
size on which a heterogeneous object of relatively small size is posed. In this
case, a straightforward FEM-BEM (finite and boundary element methods)
coupling leads to a linear system of very large scale difficult to solve [7]. In this
work, we propose an alternative method derived from a modification of the
adaptive radiation condition approach ([11, 1, 12]). This technique consists
of enclosing the computational domain by an artificial truncating surface on
which the adaptive radiation condition is posed. This condition is expressed
using integral operators acting as a correction term of the absorbing bound-
ary condition. However, enclosing completely the computational domain by
an artificial surface in this range leads to problems with very large size, and
results in very slow convergence of the iterative procedure. We propose to
localize this surface only around the heterogenous region, which will gener-
ates a relatively small bounded domain dealt with by a FEM, and suitably
coupled with a BEM expressing the solution on the impenetrable surface.
The resulting formulation, based on a particular overlapping domain decom-
position method, is solved iteratively where FEM and BEM linear systems
are solved separately. The wave problem considered in this paper is stated as
follows 

∇ · (χ∇u) + χκ2n2u = 0 in Ω,

χ∂nu = −f on Γ,

lim|x|→∞ |x|1/2(∂|x|u− iκu) = 0,

(1)
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Fig. 1 Non-overlapping decomposition of the exterior domain Ω into Ω0 and Ω1.

where Ω is the complement of the impenetrable obstacle. We indicate by Ω1

a bounded domain filled by a possibly heterogeneous material and posed on a
slot Γslot on which are applied the sources producing the radiated wave u. The
interface Σ separates Ω1 from the free propagation domain Ω0, n denotes the
normal to Γ or to Σ directed outwards respectively the impenetrable obstacle
enclosed by Γ or the domain Ω1 (see Figure 1 ), χ and n indicate, respectively,
the relative dielectric permittivity and the relative magnetic permeability,
and κ is the wave number. Let us note finally that χ = n = 1 in Ω0. For
the sake of presentation, we express problem (1) in the form of the following
system 

∆u0 + κ2u0 = 0 in Ω0,

∂nu0 = 0 on Γ ∩ ∂Ω0,

lim|x|→∞ |x|1/2(∂|x|u0 − iκu0) = 0,

(2)

{
∇ · (χ∇u1) + χκ2n2u1 = 0 in Ω1,

χ∂nu1 = −f on Γ ∩ ∂Ω1.
(3)

These boundary-value problems are coupled on Σ through the transmission
conditions

u0 = u1, ∂nu0 = χ∂nu1. (4)

2 The adaptive localized radiation condition

To localize the truncating interface only around the penetrable material,
Fig. 2, we introduce a fictitious boundary S which in turn produces the
bounded domain ΩS limited by S and the impenetrable zone. The goal is
to derive a formulation of problem (1) as a coupled system composed of two
equations with two unknowns u0 and uS where the function uS = u|ΩS is
approximated by a FEM, and u0, already defined above, is computed using
an integral equation on ΓΣ (Figure 3). The integral representation of the
function u0 is given in terms of a single- and a double-layer potential created
by densities on ΓΣ , and as a result can be seen as the restriction to Ω0 of
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Fig. 2 The bounded domain ΩS and the fictitious boundary S on which is posed the

adaptive radiation condition.

the solution of a transmission problem posed on all of the plane R2 (cf., e.g.,
[10, 14, 13]). In view of the equations that are set in ΩS , we are in the case of
a particular decomposition with an overlap of the computational domain (see
similar ideas in [4, 3] for the usual adaptive radiation condition). However, it
will be more convenient not to distinguish u0 from uS and to refer to them as
the same function u in H1

loc(Ω). Simply by restricting u to ΩS , we get from
(1) that u satisfies {

∇ · (χ∇u) + χκ2n2u = 0, in ΩS ,

χ∂nu = −f on Γ ∩ ∂ΩS .
(5)

In Ω0, we use the integral representations of the solutions to the Helmholtz
equation satisfying the Sommerfeld radiation condition (cf., e.g., [14, 8, 9, 6])

u(x) = V ∗,Σp(x)−N∗,ΓΣu(x), x ∈ Ω0, (6)

with

V ∗,Σp(x) =

∫
Σ

G(x, y)p(y) dsy (7)

p = −χ∂nu|Σ (8)

N∗,ΓΣu(x) = −
∫
ΓΣ

∂nyG(x, y)u(y) dsy (9)

where G(x, y) = (i/4)H
(1)
0 (κ|x− y|) for x 6= y ∈ R2.

The derivation of the FEM-BEM coupling procedure can be introduced
starting from the following Green formula∫

ΩS

χ
(
∇u · ∇v − κ2n2uv

)
dx = 〈∂nu, v〉H̃−1/2(S),H1/2(S) + (10)

〈f, v〉H̃−1/2(Γslot),H1/2(Γslot)

where 〈·, ·〉H̃−1/2(S),H1/2(S) denotes the duality pairing between H̃−1/2(S) and

H1/2(S), and v is an arbitrary test function in H1
loc(Ω). The space H̃−1/2(S)
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is defined similarly to H̃−1/2(Γslot) (cf. [5, 13] for the definition of Sobolev
spaces).

The localized adaptive radiation condition approach (LRC) uses an iter-
ative method to solve problem (10) where the term ∂nu, at the right-hand
side, is updated at each iteration. However, there is no garantee that problem
(10) can be safely solved. To avoid these kinds of difficulties, we introduce
the stabilization term −iκ

∫
S
uv ds in both sides of (10). On the other hand,

S is an open curve having its end-points A and B on Γ (see Fig. 2). To
prevent singular integrals near these points, we introduce a cut-off function
η ∈ D(R2) such that 0 ≤ η ≤ 1, η = 1 on S, except small neighborhood of
any of A and B, η being moreover equal to 0 around A and B, and write (10)
in the following form∫
ΩS

χ
(
∇u · ∇v − κ2n2uv

)
dx− iκ

∫
S

ηuv ds = 〈∂nu, v〉H̃−1/2(S),H1/2(S)

−iκ
∫
S

ηuv ds+ 〈f, v〉H̃−1/2(Γslot),H1/2(Γslot)
.

(11)
Consider now the curve ΓS obtained by joining S and the part of Γ outside
ΩS and express that ∂nu = 0 there outside S variationally as follows

〈∂nu, v〉H̃−1/2(S),H1/2(S) = 〈∂nu, v〉H−1/2(ΓS),H1/2(ΓS)
, (12)

for all test function v. We then get∫
ΩS

χ
(
∇u · ∇v − κ2n2uv

)
dx− iκ

∫
S

ηuv ds =

〈∂nu, v〉H−1/2(ΓS),H1/2(ΓS)
− iκ

∫
S

ηuv ds+ 〈f, v〉H̃−1/2(Γslot),H1/2(Γslot)

(13)
where the traces in the right-hand side are expressed from the integral rep-
resentation (6) of u{

ηu|S = ηV S,Σp− ηNS,ΓΣu
∂nu|ΓS = ∂nV

ΓS ,Σp− ∂nNΓS ,ΓΣu.
(14)

Clearly, since Σ and S share no common point and η is zero in the proximity
of the end-points of S, if p and u are sufficiently smooth functions, say for
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example continuous, only the integral corresponding to ∂nN
∗,ΓΣu in (14) is

an improper integral which can be expressed by means of a weakly singular
kernel as follows〈

∂nN
ΓS ,ΓΣu, v

〉
H−1/2(ΓS),H1/2(ΓS)

=
〈
∂sv, V

ΓS ,ΓΣ∂su
〉
H−1/2(ΓS),H1/2(ΓS)

−κ2
〈
vτ , V ΓS ,ΓΣ (uτ )

〉
H−1/2(ΓS),H1/2(ΓS)

(15)
from a slight adaptation of the case where ΓS = ΓΣ (cf., e.g., [10, p. 5]).
The superscripts in the integral operators indicate that they correspond to a
potential created by a density on ΓΣ and evaluated on ΓS , and τ is the unit
tangent vector pointing in the growth direction of the arc length s.

In order to be able to use a nodal approximation of (13), we use a stan-
dard technique for gluing finite element approximations of different kinds or
associated with non-conforming meshes generally called mortar FEM (cf.,
e.g., [2]). It is worth mentioning that here only standard meshes and finite
element methods of the same kind are used. This way to proceed is just con-
sidered as a tool providing an approximation for the additional unknown p
in the framework of a nodal finite elemnt method. This technique consists
in breaking the continuity across Σ that u is compelled to satisfy a priori
and to express it as a constraint. The Lagrange multiplier corresponding to
this constraint will be precisely the unknown p. It is hence more convenient
to denote by separate symbols: u0 for the restriction of u to Ω0 ∩ ΩS and
ΓΣ and u1 for its restriction to Ω1. More precisely, we will use the following
functional framework X0 = {u0 defined (a.e.) on Ω0 ∩ΩS and ΓΣ ;

∃U ∈ H1(Ω0), U |ΓΣ = u0|ΓΣ and U |Ω0∩ΩS = u0|Ω0∩ΩS
}

X1 = H1(Ω1), X = X0 ×X1,
(16)

relation (8) and (13) to write∫
ΩS∩Ω0

(
∇u0 · ∇v0 − κ2u0v0

)
dx− iκ

∫
S

ηu0v ds

+

∫
Ω1

χ
(
∇u1 · ∇v1 − κ2n2u1v1

)
dx+ 〈p, v1 − v0〉H̃−1/2(Σ),H1/2(Σ) =

〈∂nu, v0〉H−1/2(ΓS),H1/2(ΓS)
− iκ

∫
S

ηuv0 ds+ 〈f, v1〉H̃−1/2(Γslot),H1/2(Γslot)

for all (v0, v1) ∈ X. Using then the integral represensation of ∂nu|ΓS and u|S
given above in (14), we readily arrive to the formulation effectively used to
solve problem (1) numerically

(u, p) ∈ X ×M, ∀ (v, q) ∈ X ×M
a(u, v) + d(u0, v0) + b(p, v) + r(p, v0) = 〈f, v1〉H̃−1/2(Γslot),H1/2(Γslot)

b(q, u) = 0

(17)
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with the following notation

a0(u0, v0) =

∫
ΩS∩Ω0

(
∇u0 · ∇v0 − κ2u0v0

)
dx− iκ

∫
S

ηu0v0ds,

a1(u1, v1) =

∫
Ω1

χ
(
∇u1 · ∇v1 − κ2n2u1v1

)
dx,

a(u, v) = a0(u0, v0) + a1(u1, v1),

d(u0, v0) =
〈
∂nN

ΓS ,ΓΣu0, v0
〉
H−1/2(ΓS),H1/2(ΓS)

− iκ
∫
S

ηv0N
S,Σu0ds

r(p, v0) = −
∫
ΓS

v0∂nV
ΓS ,Σp ds+ iκ

∫
S

ηv0V
S,Σp ds,

b(p, v) = 〈p, v1 − v0〉H̃−1/2(Σ),H1/2(Σ) ,

(18)

and M = H̃−1/2(Σ). We refer to [5] for the analysis of the well-posedness
and the stability of (17).

3 Numerical results

To validate the LRC method, we will compare it with a direct FEM-BEM
coupling and a domain decomposition one noted P-DDM (see [5] for more
details about this method). The reference solution will be given by BE for-
mulation (boundary elements) known to be the less dispersive. The geometry
considered here (Fig. 4) depends on a parameter L used to set a large size
for the impenetrable domain relatively to the zone meshed in triangles as
shown in Fig. 4. By varying this parameter, we test each numerical tech-
nique in terms of accuracy, CPU time, and convergence for the iterative
ones. The lengths are expressed in wavelength units. To be able to compare
the LRC formulation with the BE one, we suppose χ and n constant in Ω1.
More precisely, we choose χ = 1/4 and n = 2(1 + i), which correspond to a
magnetic material in electromagnetism. The sources are located on the seg-
ment {x2 = 0, −0.25 < x1 < 0.25} and are given by the Gaussian function
f(x1) = − exp(−(10x1)2).

The mesh used is of 20 points by wavelength in the free propagation zone
and 15 points by wavelength in the material for the FEM-BEM formulations.
The BE formulation is meshed using 20 points by wavelength for both the
free propagation zone and the material. All the iterative methods are solved
using the GMRES algorithm (cf., e.g. [15]). The first test concerns the case
of a moderately elongated impenetrable domain corresponding to L = 4 and
the second, much more elongated, is obtained for L = 50. Table 1 summarizes
the numerical for each method in terms of accuracy and CPU time. For the
iterative methods, we also compute the iteration number, noted “Iter” in
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L CPU E Iter

BE 4 3 – –
50 94 – –

FEBE 4 19 0.14 –
50 169 0.14 –

LRC 4 38 0.17 11
50 148 0.23 11

P-DDM 4 13 0.14 30
50 127 0.14 30

Table 1 Comparison of the various formulations in terms of accuracy, CPU time, and

number of iterations.

Table 1, obtained by reducing the residual by a factor 10−6. To measure the
accuracy, we use the quantity E = max |s(θ)− sBE(θ)| where sBE(θ) is the
far field computed by the BE approach.

The results reported in Table 1 confirm the robustness of the LRC formu-
lation, it keeps the accuracy of the FEBE and P-DDM approaches. The CPU
time used by the different methods also clearly shows the advantage of de-
coupling the solution of the sparse and the dense parts in the problem. Even
if usual DDMs exhibit the same efficiency in terms of number of iterations
and accuracy, their related iterative procedures may break down if the cor-
responding boundary-value problems set in the interior domain Ω1 present
a resonance at the considered frequency, contrary to the LRC approach, see
[5] for more explanations and numerical results. Another remarkable feature
is that all the iterative procedures require the same number of iterations to
converge for small to very large impenetrable domains.
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