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Abstract In this paper, we develop a fully implicit finite difference scheme for the
lattice Boltzmann equations. A parallel, highly scalable Newton–Krylov–RAS al-
gorithm is presented to solve the large sparse nonlinear system of equations arising
at each time step. RAS is a restricted additive Schwarz preconditioner built with a
cheaper discretization. The accuracy of the proposed method is carefully studied by
comparing with other benchmark solutions. We show numerically that the nonlin-
early implicit method is scalable on a supercomputer with more than ten thousand
processors.

1 Introduction

The 2D steady state lid-driven cavity flow problem is a benchmark problem to test
new numerical methods due to its simple geometry and interesting flow behaviors.
There are several mathematical models available for simulating this flow, such as
the Navier–Stokes (NS) equations and the Boltzmann equations among others. For
problems satisfying the continuum assumption, the Boltzmann model and the NS
model usually have the same solution in some sense, because the NS model can be
derived from the Boltzmann model. But for problems that don’t satisfy the contin-
uum assumption, the NS model fails to provide a physically meaningful solution and
the Boltzmann model can be viewed as a higher level model. In the past two decades,
numerical methods based on the Boltzmann model, such as the lattice Boltzmann
equations (LBEs) become increasingly popular [2, 10] in simulating the 2D lid-
driven cavity flow. There are extensive numerical experiments carried out with the
LBEs [10, 12, 13]. However, all existing approaches are explicit or semi-implicit and
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the time step size of these approaches is limited by the Courant–Friedrichs–Lewy
(CFL) condition, and the numerical solutions obtained by using these methods are
less accurate than those of the NS equations.

In this paper, we introduce a fully implicit and parallel Newton–Krylov–RAS
algorithm for the LBEs, which is unconditionally stable and the time step size de-
pends only on the accuracy requirement. The method is based on an inexact New-
ton method whose Jacobian systems are solved with an overlapping RAS precon-
ditioned Krylov subspace method. To reduce the computational cost and improve
the scalability of the RAS preconditioner, a first-order discretization is developed
just for the preconditioner which is re-computed only once per time step. We report
accuracy results and scalability studies on fine meshes and on a supercomputer with
more than ten thousands processors.

2 Model problem, discretization, and domain decomposition
preconditioning

In this paper, the LBEs [2] are considered

∂ fα
∂ t

(x, t)+ eα ·▽ fα(x, t) =Θα , α = 0, 1, · · · ,8, x ∈ Ω , t ∈ (0,T ), (1)

where fα is the particle distribution function, eα = (eα1,eα2) is the discrete particle
velocity, Θα is the collision operator, Ω = (0,1)2 ∈ R2 is the computational domain,
and (0,T ) is the time interval. The macroscopic density ρ and the macroscopic ve-
locity u = (u1, u2) of the fluid are respectively induced from the particle distribution
function by

ρ = ∑
α

fα , u =
1
ρ ∑

α
fα eα . (2)

The collision operator is defined as Θα =− 1
τ ( fα(x, t)− f (eq)

α (x, t)), where τ = c−2
s ν

is the relaxation time of the fluid and f (eq)
α is the local equilibrium distribution func-

tion (EDF) defined as

f (eq)
α = wα ρ

[
1+

1
c2

s
eα ·u+

1
2c4

s
(eα ·u)2 − 1

2c2
s
|u|2

]
. (3)

Here ν is the shear viscosity, cs = 1/
√

3 is the sound speed, |u|= (u2
1 +u2

2)
1/2, and

the discrete velocities are given by e0 = (0,0), and eα = λα(cosθα ,sinθα), with
λα = 1, θα = (α −1)π/2 for α = 1, 2, 3, 4 and λα =

√
2, θα = (α −5)π/2+π/4

for α = 5, 6, 7, 8. The weighting factors are defined as w0 = 4/9, wα = 1/9 for
α = 1, 2, 3, 4 and wα = 1/36 for α = 5, 6, 7, 8.

Assume (0,T ) is divided into time intervals, where n is the time step index. A
fully implicit backward Euler scheme is used to discretize the temporal derivative.
Then we obtain a semi-discretized system for (1) as follows
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f n+1
α − f n

α
∆ tn+1

+ eα ·▽ f n+1
α =Θ n+1

α , (4)

where the time step size is ∆ tn+1 = tn+1 − tn, f n
α(x) ≈ fα(x, tn), and Θ n+1

α ≈
Θα(x, tn+1). If eαk ̸= 0, we implement a family of fully implicit finite difference
schemes originally proposed in [10] for an explicit method to discretize the spatial
derivative ∂ fα

∂xk
. We partition the domain Ω to a uniform N ×N mesh with mesh size

h = 1/(N −1) and mesh points (xi
1,x

j
2), i, j = 0,1, ...,N −1. Let us define a scheme

∂ fα
∂xi

k
|m in the family as

∂ fα

∂xi
k

∣∣∣
m
= ε

∂ fα

∂xi
k

∣∣∣
u
+(1− ε)

∂ fα

∂xi
k

∣∣∣
c
, k = 1,2, 1 ≤ i ≤ N −2, (5)

where 0 ≤ ε ≤ 1 is a control parameter that determines how much upwinding is
added,

∂ fα

∂xi
k

∣∣
c =

1
2h

[
fα(xi+1

k , ·)− fα(xi−1
k , ·)

]
,

and

∂ fα

∂xi
k

∣∣∣
u
=


eαk

2h

[
3 fα(xi

k, ·)−4 fα(x
i−eαk
k , ·)+ fα(x

i−2eαk
k , ·)

]
if 2 ≤ i ≤ N −3,

eαk

h

[
fα(xi

k, ·)− fα(x
i−eαk
k , ·)

]
if i = 1,or i = N −2.

Theoretically, the scheme is second-order in the interior of the domain and first-
order near the boundary, but for our test cases, the scheme is effectively second-
order. We also introduce a cheaper first-order upwinding scheme ∂ fα

∂xi
k
= eαk

h

[
fα(xi

k, ·)

− fα(x
i−eαk
k , ·)

]
to construct an efficient preconditioner for the scheme (5).

The initial condition is set to be the EDF, i.e. fα(x,0) = f (eq)
α (x,0). The boundary

conditions are obtained by a nonequilibrium extrapolation method [14]. Assume that
xb is a mesh point on the boundary of the domain, and xnb is the nearest neighboring
mesh point of xb in the interior of the domain. According to the nonequilibrium
extrapolation method, the particle distribution function at xb is set to be

fα(xb) = f (eq)
α (xb)+ [ fα(xnb)− f (eq)

α (xnb)]. (6)

After the discretization, a system of nonlinear algebraic equations

F n+1(Xn+1) :=
Xn+1 −Xn

∆ tn+1
+G n+1(Xn+1) = 0, n = 0,1, . . . (7)

is obtained and needs to be solved at each time step. Here G n+1 is dependent on the
spatial discretization and the collision term. We employ a Newton–Krylov–Schwarz
(NKS) [5, 6] type algorithm to solve (7). At each Newton iteration, a Jacobian sys-
tem is analytically computed and approximately solved by using a Krylov subspace
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method
Jn+1Sn+1 =−F n+1(Xn+1), (8)

where the Jacobian matrix Jn+1 = (F n+1)′(Xn+1) and Sn+1 is the search direction
of the Newton method. A restarted GMRES (20) method is applied to approximately
solve the right-preconditioned system

Jn+1(Mn+1)−1(Mn+1Sn+1) =−F n+1(Xn+1), (9)

where Mn+1 is the restricted additive Schwarz (RAS) preconditioner defined in [7].
The initial guess for the Newton iteration is chosen as the final solution from the
previous time step.

3 Numerical experiments

We implement the new algorithm described in the previous section based on PETSc
[1]. A steady state driven cavity flow in 2D is carefully studied in this section. The
numerical tests are carried out on a supercomputer Tianhe-2, which tops the Top-
500 list as of June, 2013. The computing nodes of Tianhe-2 are interconnected via a
proprietary high performance network. And there are two 12-core Intel Ivy Bridge
Xeon CPUs and 24GB local memory in each node. In the numerical experiments
we use all 24 CPU cores in each node and assign one subdomain to each core.

In the 2D driven cavity flow problem, we assume the top boundary of the cavity
moves from right to left with a constant velocity U0 = −0.1 while the other three
boundaries are fixed. The initial condition of macroscopic variables ρ = 1.0 and u=
(0,0) in the cavity. The Reynolds number is defined as Re =U0H/ν with H = 1.0.
In our simulations, Re is chosen to be 100, 1000, 3200, 5000, 7500, and 10000.

Simulating this flow by solving the NS equations is a popular approach [8, 9, 11],
in which the presence of singularities at the corners is a well-known difficulty. At
the corners (0,1) and (1,1), the pressure and the vorticity are unbounded, and at
the corners (1,0) and (0,0) the second derivatives of the pressure and vorticity are
unbounded. To improve the accuracy of the solution at the corners, Deng et al. [8]
perform a Richardson extrapolation of solutions obtained by a finite volume method.
In [3], a spectral method is developed to remove the pollution of the singularities.
To check the accuracy of the discretization, we simulate the flow at Re = 100 with
different mesh sizes. The maximum of u1 on the vertical line x1 = 0.5 is denoted as
u1,max and its location x2,max. The minimum and maximum of u2 on the horizontal
line x2 = 0.5 are, respectively, denoted as u2,min and u2,max; their locations are, re-
spectively, denoted as x1,min and x1,max. Table 1 shows the values of these extremum
and previously published results obtained by the NS equations. Our results are in
agreement with those of [4, 9], but less accurate than the results of [3, 8]. In [4, 9],
second-order schemes are used to solve the NS equations. In [3, 8], higher order
schemes are given to remove the pollution from the corner singularities.
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Table 1 Re = 100, extrema of the velocity through the centerlines of the cavity.

Reference N u1,max x2,max u2,max x1,max u2,min x1,min
Present 65 0.2075 0.4531 0.1674 0.7656 -0.2471 0.1875
Present 97 0.2098 0.4583 0.1711 0.7604 -0.2492 0.1875
Present 129 0.2107 0.4609 0.1725 0.7656 -0.2500 0.1875
Present 161 0.2111 0.4562 0.1733 0.7625 -0.2504 0.1875
Present 257 0.2117 0.4609 0.1742 0.7617 -0.2510 0.1875
Ref. [3] 96 0.2140 0.4581 0.1796 0.7630 -0.2538 0.1896
Ref. [8] 64 0.2132 − 0.1790 − -0.2534 −
Ref. [9] 129 0.2109 0.4531 0.1753 0.7656 -0.2453 0.1953
Ref. [4] 129 0.2106 0.4531 0.1786 0.7656 -0.2521 0.1875

The streamline contours for the cavity flow configurations with Re increasing
from 100 to 10000 are shown in Fig. 1. We observe that the flow structures are
in good agreement with the benchmark results obtained by Ghia et al. [9]. These
plots show clearly the effect of Re on the flow pattern. For flows with Re ≤ 1000,
only three vortices appear in the cavity; a primary one near the center and a pair of
secondary ones in the corners of the cavity. At Re = 3200, a third secondary vortex
is seen in the upper right corner. At Re = 5000, a tertiary vortex appears in the lower
left corner. Furthermore, another tertiary vortex appears in the lower right corner as
Re ≥ 7500.

To show the parallel scalability of the implicit method, we consider a 4096×4096
uniform mesh. We use a fixed time step size ∆ t = 0.0244 and run the code for
10 time steps. We test two overlapping factors δ = h,2h with different number of
processors. We compare the point-block LU subdomain solver and the point-block
ILU(l) solver. Here l is the fill-in level for the incomplete LU factorization. The
point-block size is 9×9. We set the fill-in levels l = 0,1,2,3. The numbers of linear
and nonlinear iterations are reported in Table 2. The number of linear iterations
grows slowly with the increase of the number of processors. Large overlap or larger
fill-in helps reduce the total number of linear iterations. The compute time of both
an explicit method [10] and the implicit method with different subdomain solvers is
shown in Fig. 2. The optimal compute time can be obtained with fill-in level l = 1,
which is less than that of the explicit method. Excellent speedup is obtained from
512 processors to 16384 processors. From the figure we see that ILU is faster in
terms of the total compute time than LU.

We also do some weak scaling tests of proposed implicit method with local
solvers (LU or ILU(1)). It is observed that the method does not reach the ideal per-
formance, because the number of GMRES iterations increases as more processor
cores are used. We believe that coarse level corrections in the additive Schwarz pre-
conditioner can improve the weak scaling performance of the fully implicit solver
and plan to study this issue in the future. But, due to the page limit, the results are
not given in the paper.
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(a) Re = 100, 128×128 mesh (b) Re = 1000, 128×128 mesh
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(c) Re = 3200, 256×256 mesh (d) Re = 5000, 512×512 mesh
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(e) Re = 7500, 768×768 mesh (f) Re = 10000, 768×768 mesh
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Fig. 1 Streamline patterns for the primary, secondary, and additional corner vortices.
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Table 2 Test results using different overlapping factors and number of processors, 4096× 4096
mesh (# of unknowns = 150,994,944), t0 = 0, time step size ∆ t = 0.0244, CFL = 100, Re = 3200,
10 time steps.

δ Np
Newton(avg.) GMRES/Newton

LU ILU(0) ILU(1) ILU(2) ILU(3) LU ILU(0) ILU(1) ILU(2) ILU(3)

h

512 4.7 6.1 6 6 6 20.68 26.62 21.93 21.95 21.85
1024 4.7 6.1 6 6 6 21.83 27.21 22.92 22.98 22.90
2048 4.7 6.1 6 6 6 22.62 27.93 23.42 23.52 23.55
4096 4.7 6.1 6 6 6 24.02 28.82 24.45 24.63 24.55
8192 4.7 6.1 6 6 6 26.11 30.43 25.73 25.80 25.73

16384 4.7 6.1 6 6 6 27.60 32.08 26.98 27.07 26.98

2h

512 6 6.1 6 6 6 20.65 26.16 20.85 20.67 20.63
1024 6 6.1 6 6 6 21.78 26.82 21.50 21.60 21.60
2048 6 6.1 6 6 6 22.35 27.43 22.03 22.07 22.12
4096 6 6.1 6 6 6 23.85 28.10 22.83 22.97 23.10
8192 6 6.1 6 6 6 25.47 29.43 23.78 23.77 23.78

16384 6 6.1 6 6 6 26.85 30.97 24.90 24.68 25.20

4 Conclusions

We developed a parallel, highly scalable fully implicit method for the LBEs. The ac-
curacy of the method is comparable with that of the NS equations. The fully implicit
method exhibits an excellent speedup with up to 150 million unknowns on a super-
computer with up to 16384 processors. Without the CFL limit, the fully implicit
method can be used with a suitable adaptive time stepping method that increases the
time step size as the solution approaches steady state. Because of the page limit, the
discussion related to adaptive time stepping and comparisons with other methods
will be presented in a separate report.
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