A deluxe FETI-DP method for full DG discretization of elliptic problems

Maksymilian Dryja¹, Juan Galvis², and Marcus Sarkis³

1 Introduction, differential and discrete problems

In this paper we consider a boundary value problem for elliptic second order partial differential equations with highly discontinuous coefficients in a 2D polygonal region Ω . The problem is discretized by a (full) DG method on triangular elements using the space of piecewise linear functions. The goal of this paper is to study a special version of FETI-DP preconditioner, called *deluxe*, for the resulting discrete system of this discretization. The deluxe version for continuous FE discretization is considered in Dohrmann and Widlund [2013], for standard FETI-DP methods for composite DG method, see Dryja et al. [2014], for full DG, see Dryja et al. [2014], and for conforming FEM, see the book Toselli and Widlund [2005].

Now we discuss the continuous and discrete problems we take into consideration for preconditioning.

Differential problem: Find $u_{ex}^* \in H_0^1(\Omega)$ such that

$$a(u_{ex}^*, v) = f(v) \quad \text{for all } v \in H_0^1(\Omega), \tag{1}$$

 $\begin{array}{c} a(u,v) := \sum_{i=1}^N \int_{\varOmega_i} \rho_i \nabla u \cdot \nabla v \, dx \quad \text{and} \quad f(v) := \int_{\varOmega} fv \, dx, \\ \text{where the } \rho_i \text{ are positive constants and } f \in L^2(\varOmega). \end{array}$

We assume that $\overline{\Omega} = \bigcup_{i=1}^{N} \overline{\Omega}_i$ and the substructures Ω_i are disjoint shaped regular polygonal subregions of diameter $O(H_i)$. We assume that the parti-

¹Department of Mathematics, Warsaw University, Banacha 2, 00-097 Warsaw, Poland. This research was supported in part by the Polish Sciences Foundation under grant 2011/01/B/ST1/01179. dryja@mimuw.edu.pl · ²Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia. jcgalvisa@unal.edu.co · ³Instituto Nacional de Matemática Pura e Aplicada (IMPA), Estrada Dona Castorina 110, CEP 22460-320, Rio de Janeiro, Brazil, and Department of Mathematical Sciences at Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA. msarkis@wpi.edu

tion $\{\Omega_i\}_{i=1}^N$ is geometrically conforming, i.e., for all i and j with $i \neq j$, the intersection $\partial \Omega_i \cap \partial \Omega_j$ is either empty, a common corner or a common edge of Ω_i and Ω_j . For clarity we stress that here and below the identifier edge means a curve of continuous intervals and its two endpoints are called corners. The collection of these corners on $\partial \Omega_i$ are referred as the set of corners of Ω_i . Let us denote $E_{ij} := \partial \Omega_i \cap \partial \Omega_j$ as an edge of $\partial \Omega_i$ and $E_{ji} := \partial \Omega_j \cap \partial \Omega_i$ as an edge of $\partial \Omega_j$. Let us denote by $\mathcal{J}_H^{i,0}$ the set of indices j such that Ω_j has a common edge E_{ji} with Ω_i . To take into account edges of Ω_i which belong to the global boundary $\partial\Omega$, let us introduce a set of indices $\mathcal{J}_H^{i,\partial}$ to refer these edges. The set of indices of all edges of Ω_i is denoted by $\mathcal{J}_H^{i} = \mathcal{J}_H^{i,0} \cup \mathcal{J}_H^{i,\theta}$.

Discrete problem: Let us introduce a shape regular and quasiuniform triangulation (with triangular elements) \mathcal{T}_h^i on Ω_i and let h_i represent its mesh size. The resulting triangulation on Ω is matching across $\partial \Omega_i$. Let $X_i(\Omega_i) := \prod_{\tau \in \mathcal{T}^i} X_{\tau}$ be the product space of finite element (FE) spaces X_{τ} which consists of linear functions on the element τ belonging to \mathcal{T}_h^i . We note that a function $u_i \in X_i(\Omega_i)$ allows discontinuities across elements of \mathcal{T}_h^i . We also note that we do not assume that functions in $X_i(\Omega_i)$ vanish on $\partial\Omega$. The global DG finite element space we consider is defined by $X(\Omega)$

The global BG limits element space we consider a defined by $T_{i-1}^N X_i(\Omega_i) \equiv X_1(\Omega_1) \times X_2(\Omega_2) \times \cdots \times X_N(\Omega_N)$.

We define $\mathcal{E}_h^{i,0}$ as the set of edges of the triangulation \mathcal{T}_h^i which are inside Ω_i , and by $\mathcal{E}_h^{i,j}$, for $j \in \mathcal{J}_H^i$, the set of edges of the triangulation \mathcal{T}_h^i which are on E_{ij} . An edge $e \in \mathcal{E}_h^{i,0}$ is shared by two elements denoted by τ_+ and τ_- of \mathcal{T}_h^i with outward unit normal vectors \mathbf{n}^+ and \mathbf{n}^- , respectively, and denote $(\nabla \tau_i) = (\nabla \tau_i) + (\nabla$ $\{\nabla u\} = \frac{1}{2}(\nabla u_{\tau_+} + \nabla u_{\tau_-})$ and $[u] = u_{\tau_+} \mathbf{n}^+ + u_{\tau_-} \mathbf{n}^-$. The discrete problem we consider by the DG method is of the form: *Find*

 $u^* = \{u_i^*\}_{i=1}^N \in X(\Omega) \text{ where } u_i^* \in X_i(\Omega_i), \text{ such that }$

$$a_h(u^*, v) = f(v)$$
 for all $v = \{v_i\}_{i=1}^N \in X(\Omega),$ (2)

where the global bilinear from a_h and the right hand side f are assembled as

$$a_h(u,v) := \sum_{i=1}^N a_i'(u,v) \text{ and } f(v) := \sum_{i=1}^N \int_{\Omega_i} f v_i \, dx.$$

Here, the local bilinear forms a'_i , i = 1, ..., N, are defined as

$$a_i'(u,v) := a_i(u_i,v_i) + s_{0,i}(u_i,v_i) + p_{0,i}(u,v) + s_{\partial,i}(u,v) + p_{\partial,i}(u,v)$$
(3)

where a_i , $s_{0,i}$ and $p_{0,i}$ are defined by,

$$a_i(u_i, v_i) := \sum_{\tau \in \mathcal{T}_h^i} \int_{\tau} \rho_i \nabla u_i \cdot \nabla v_i \, dx,$$

$$s_{0,i}(u_i, v_i) := -\sum_{e \in \mathcal{E}_h^{i,0}} \int_{e} (\rho_i \{ \nabla u_i \} \cdot [v_i] + \rho_i \{ \nabla v_i \} \cdot [u_i]) \, ds, \quad \text{and} \quad ds$$

 $p_{0,i}(u,v) := \sum_{e \in \mathcal{E}_h^{i,0}} \int_e \delta \frac{\rho_i}{h_e} [u_i].[v_i] ds$. The corresponding forms over the local interface edges are given by

$$s_{\partial,i}(u,v) := \sum_{j \in \mathcal{I}_H^i} \sum_{e \in \mathcal{E}_h^{i,j}} \int_e \frac{1}{l_{ij}} \left(\rho_{ij} \frac{\partial u_i}{\partial n} (v_j - v_i) + \rho_{ij} \frac{\partial v_i}{\partial n} (u_j - u_i) \right) ds,$$

$$p_{\partial,i}(u,v) := \sum_{j \in \mathcal{I}_H^i} \sum_{e \in \mathcal{E}_h^{i,j}} \int_e \frac{\delta}{l_{ij}} \frac{\rho_{ij}}{h_e} (u_i - u_j) (v_i - v_j) ds,$$

respectively. Here $\rho_{ij} = 2\rho_i\rho_j/(\rho_i + \rho_j)$, h_e denotes the length of the edge e. When $j \in \mathcal{J}_H^{i,0}$ we set $l_{ij} = 2$, when $j \in \mathcal{J}_H^{i,\partial}$ we denote the boundary edges $E_{ij} \subset \partial \Omega_i$ by $E_{i\partial}$ and set $l_{i\partial} = 1$, and on the artificial edge $E_{ji} \equiv E_{\partial i}$ we set $u_{\partial} = 0$ and $v_{\partial} = 0$. The partial derivative $\frac{\partial}{\partial n}$ denotes the outward normal derivative on $\partial \Omega_i$ and δ is the penalty positive parameter.

The discrete formulation used here is convenient for our FETI-DP method. We also mention that problem (2) has a unique solution for sufficiently large δ and its error bound is known, see for example, Dryja et al. [2013, 2014].

2 Schur complement matrices and harmonic extensions

In this section, we describe the elimination of unknowns interior to the subdomains required on the FETI-DP formulation for DG discretizations.

Let the set of degrees of freedom associated to subdomain Ω_i be defined by $\Omega_i' := \overline{\Omega}_i \bigcup \{ \bigcup_{j \in \mathcal{J}_{\pi}^{i,0}} \overline{E}_{ji} \}$

i.e., it is the union of $\overline{\Omega}_i$ and the $\overline{E}_{ji} \subset \partial \Omega_j$ such that $j \in \mathcal{J}_H^{i,0}$. Define $\Gamma_i := \overline{\partial \Omega_i \backslash \partial \Omega}$ and $\Gamma_i' := \Gamma_i \bigcup \{ \bigcup_{j \in \mathcal{J}_H^{i,0}} \overline{E}_{ji} \}$. We also introduce the sets

$$\Gamma := \bigcup_{i=1}^{N} \Gamma_i, \quad \Gamma' := \prod_{i=1}^{N} \Gamma_i', \quad I_i := \Omega_i' \backslash \Gamma_i' \quad \text{and} \quad I := \prod_{i=1}^{N} I_i.$$
 (4)

Let $W_i(\Omega_i')$ be the FE space of functions defined by nodal values on Ω_i'

$$W_i(\Omega_i') = W_i(\overline{\Omega}_i) \times \prod_{j \in \mathcal{J}_H^{0,i}} W_i(\bar{E}_{ji}), \tag{5}$$

where $W_i(\overline{\Omega}_i) := X_i(\Omega_i)$ and $W_i(\bar{E}_{ji})$ is the trace of the DG space $X_j(\Omega_j)$ on $\bar{E}_{ji} \subset \partial \Omega_j$ for all $j \in \mathcal{J}_H^{i,0}$. A function $u_i' \in W_i(\Omega_i')$ is defined by the nodal values on Ω_i' , i.e., by the nodal values on $\overline{\Omega}_i$ and the nodal values on all adjacent faces \bar{E}_{ji} for all $j \in \mathcal{J}_H^{i,0}$. Below, we denote u_i' by u_i if it is not confused with functions of $X_i(\Omega_i)$. A function $u_i \in W_i(\Omega_i')$ is represented as $u_i = \{(u_i)_i, \{(u_i)_j\}_{j \in \mathcal{J}_H^{i,0}}\}$, where $(u_i)_i := u_i|_{\overline{\Omega}_i}$ (u_i restricted to $\overline{\Omega}_i$) and $(u_i)_j := u_i|_{\bar{E}_{ji}}$ (u_i restricted to \bar{E}_{ji}). Here and below we use the same notation to identify both DG functions and their vector representations. Note that

 $a'_i(\cdot,\cdot)$, see (3), is defined on $W_i(\Omega'_i) \times W_i(\Omega'_i)$ with corresponding stiffness matrix A'_i defined by

$$a_i'(u_i, v_i) = \langle A_i' u_i, v_i \rangle \quad u_i, v_i \in W_i(\Omega_i'), \tag{6}$$

where $\langle u_i, v_i \rangle$ denotes the ℓ_2 inner product of nodal values associated to the vector space in consideration. We also represent $u_i \in W_i(\Omega_i')$ as $u_i = (u_{i,I}, u_{i,\Gamma'})$ where $u_{i,\Gamma'}$ represents values of u_i at nodal points on Γ_i' and $u_{i,I}$ at the interior nodal points in I_i , see (4). Hence, let us represent $W_i(\Omega_i')$ as the vector spaces $W_i(I_i) \times W_i(\Gamma_i')$. Using the representation $u_i = (u_{i,I}, u_{i,\Gamma'})$, the matrix A_i' can be represented as

$$A_i' = \begin{pmatrix} A_{i,II}' & A_{i,I\Gamma'}' \\ A_{i,\Gamma'I}' & A_{i,\Gamma'\Gamma'}' \end{pmatrix}. \tag{7}$$

The Schur complement of A'_i with respect to $u_{i,\Gamma'}$ is of the form

$$S_i' := A_{i,\Gamma'\Gamma'}' - A_{i,\Gamma'I}' (A_{i,II}')^{-1} A_{i,I\Gamma'}'$$
(8)

and introduce the block diagonal matrix $S' = \text{diag}\{S_i'\}_{i=1}^N$. Let us introduce the product space

$$W(\Omega') := \prod_{i=1}^{N} W_i(\Omega_i'),$$

i.e., $u \in W(\Omega')$ means that $u = \{u_i\}_{i=1}^N$ where $u_i \in W_i(\Omega'_i)$; see (5) for the definition of $W_i(\Omega'_i)$. Recall that we write $(u_i)_i = u_i|_{\overline{\Omega}_i}$ (u_i restricted to $\overline{\Omega}_i$) and $(u_i)_j = u_i|_{\overline{E}_{ji}}$ (u_i restricted to \overline{E}_{ji}). Using the representation $u_i = (u_{i,I}, u_{i,\Gamma'})$ where $u_{i,I} \in W_i(I_i)$ and $u_{i,\Gamma'} \in W_i(\Gamma'_i)$ were used in (7), let us introduce the product space

$$W(\Gamma') := \prod_{i=1}^{N} W_i(\Gamma_i'),$$

i.e., $u_{\Gamma'} \in W(\Gamma')$ means that $u_{\Gamma'} = \{u_{i,\Gamma'}\}_{i=1}^N$ where $u_{i,\Gamma'} \in W_i(\Gamma'_i)$. The space $W(\Gamma')$ which was defined on Γ' only, is also interpreted below as the subspace of $W(\Omega')$ of functions which are discrete \mathcal{H}'_i -harmonic in each Ω_i .

3 FETI-DP with corner constraints

We now design a FETI-DP method for solving (2). We follow the abstract approach described in pages 160-167 in Toselli and Widlund [2005].

We introduce the nodal points associated to the corner unknowns by

$$\mathcal{V}_i' := \mathcal{V}_i \bigcup \{ \bigcup_{j \in \mathcal{J}_H^{i,0}} \partial E_{ji} \}$$
 where $\mathcal{V}_i := \{ \bigcup_{j \in \mathcal{J}_H^{i,0}} \partial E_{ij} \}.$

We now consider the subspace $\tilde{W}(\Omega') \subset W(\Omega')$ (and $\tilde{W}(\Gamma') \subset W(\Gamma')$) as the space of functions which are continuous on all the V_i as follows.

Definition 1 (Subspaces $\widetilde{W}(\Omega')$ and $\widetilde{W}(\Gamma')$). We say that $u = \{u_i\}_{i=1}^N \in \widetilde{W}(\Omega')$ if it is continuous at the corners \mathcal{V}'_i , that is, if for $1 \leq i \leq N$ we have

$$(u_i)_i(x) = (u_j)_i(x)$$
 at $x \in \partial E_{ij}$ for all $j \in \mathcal{J}_H^{i,0}$, and (9)

$$(u_i)_j(x) = (u_j)_j(x)$$
 at $x \in \partial E_{ji}$ for all $j \in \mathcal{J}_H^{i,0}$. (10)

Analogously we define $\tilde{W}(\Gamma')$.

Note that $\tilde{W}(\Gamma') \subset W(\Gamma')$. Let \tilde{A} be the stiffness matrix which is obtained by assembling the matrices A_i' for $1 \leq i \leq N$, from $W(\Omega')$ to $\tilde{W}(\Omega')$. Note that the matrix \tilde{A} is no longer block diagonal since there are couplings between variables at the corners \mathcal{V}_i' for $1 \leq i \leq N$. We represent $u \in \tilde{W}(\Omega')$ as $u = (u_I, u_\Pi, u_\Delta)$ where the subscript I refers to the interior degrees of freedom at nodal points $I = \prod_{i=1}^N I_i$, the Π refers to the corners \mathcal{V}_i' for all $1 \leq i \leq N$, and the Δ refers to the remaining nodal points, i.e., the nodal points of $\Gamma_i' \setminus \mathcal{V}_i'$, for all $1 \leq i \leq N$. The vector $u = (u_I, u_\Pi, u_\Delta) \in \tilde{W}(\Omega')$ is obtained from the vector $u = \{u_i\}_{i=1}^N \in W(\Omega')$ using the equations (9) and (10), i.e., the continuity of u on \mathcal{V}_i' for all $1 \leq i \leq N$. Using the decomposition $u = (u_I, u_\Pi, u_\Delta) \in \tilde{W}(\Omega')$ we can partition \tilde{A} as

$$\tilde{A} = \begin{pmatrix} A'_{II} & A'_{I\Pi} & A'_{I\triangle} \\ A'_{\Pi I} & \tilde{A}_{\Pi\Pi} & A'_{\Pi\triangle} \\ A'_{\triangle I} & A'_{\triangle\Pi} & A'_{\triangle\triangle} \end{pmatrix}.$$

We note that the only couplings across subdomains are through the variables Π where the matrix \tilde{A} is subassembled.

A Schur complement of \tilde{A} with respect to the \triangle -unknowns (eliminating the I- and the Π -unknowns) is of the form

$$\tilde{S} := A'_{\triangle\triangle} - (A'_{\triangle I} \ A'_{\triangle\Pi}) \begin{pmatrix} A'_{II} \ A'_{I\Pi} \\ A'_{\Pi I} \ \tilde{A}_{\Pi\Pi} \end{pmatrix}^{-1} \begin{pmatrix} A'_{I\triangle} \\ A'_{\Pi\triangle} \end{pmatrix}. \tag{11}$$

A vector $u \in \tilde{W}(\Gamma')$ can uniquely be represented by $u = (u_{\Pi}, u_{\triangle})$, therefore, we can represent $\tilde{W}(\Gamma') = \hat{W}_{\Pi}(\Gamma') \times W_{\triangle}(\Gamma')$, where $\hat{W}_{\Pi}(\Gamma')$ refers to the Π -degrees of freedom of $\tilde{W}(\Gamma')$ while $W_{\triangle}(\Gamma')$ to the \triangle -degrees of freedom of $\tilde{W}(\Gamma')$. The vector space $W_{\triangle}(\Gamma')$ can be decomposed as

$$W_{\triangle}(\Gamma') = \prod_{i=1}^{N} W_{i,\triangle}(\Gamma_i')$$
(12)

where the local space $W_{i,\triangle}(\Gamma'_i)$ refers to the degrees of freedom associated to the nodes of $\Gamma'_i \backslash \mathcal{V}'_i$ for $1 \leq i \leq N$. Hence, a vector $u \in \tilde{W}(\Gamma')$ can be represented as $u = (u_{\Pi}, u_{\triangle})$ with $u_{\Pi} \in \hat{W}_{\Pi}(\Gamma')$ and $u_{\triangle} = \{u_{i,\triangle}\}_{i=1}^{N} \in W_{\triangle}(\Gamma')$ where $u_{i,\triangle} \in W_{i,\triangle}(\Gamma'_i)$. Note that \tilde{S} , see (11), is defined on the vector space $W_{\triangle}(\Gamma')$.

In order to measure the jump of $u_{\triangle} \in W_{\triangle}(\Gamma')$ across the \triangle -nodes let us introduce the space $\hat{W}_{\triangle}(\Gamma)$ defined by

$$\hat{W}_{\triangle}(\Gamma) = \prod_{i=1}^{N} X_i(\Gamma_i \backslash \mathcal{V}_i),$$

where $X_i(\Gamma_i \backslash \mathcal{V}_i)$ is the restriction of $X_i(\Omega_i)$ to $\Gamma_i \backslash \mathcal{V}_i$. To define the jumping matrix $B_{\triangle} : W_{\triangle}(\Gamma') \to \hat{W}_{\triangle}(\Gamma)$, let $u_{\triangle} = \{u_{i,\triangle}\}_{i=1}^N \in W_{\triangle}(\Gamma')$ and let $v := B_{\triangle}u$ where $v = \{v_i\}_{i=1}^N \in \hat{W}_{\triangle}(\Gamma)$ is defined by

$$v_i = (u_{i,\triangle})_i - (u_{j,\triangle})_i \text{ on } E_{ijh} \text{ for all } j \in \mathcal{J}_H^{i,0},$$
 (13)

where E_{ijh} is the set of interior nodal points on E_{ij} . The jumping matrix B_{\triangle} can be written as

$$B_{\triangle} = (B_{\wedge}^{(1)}, B_{\wedge}^{(2)}, \cdots, B_{\wedge}^{(N)}),$$
 (14)

where the rectangular matrix $B_{\triangle}^{(i)}$ consists of columns of B_{\triangle} attributed to the (i) components of functions of $W_{i,\triangle}(\Gamma'_i)$ of the product space $W_{\triangle}(\Gamma')$, see (12). The entries of the rectangular matrix consist of values of $\{0,1,-1\}$. It is easy to see that the Range $B_{\triangle} = \hat{W}_{\triangle}(\Gamma)$, so B_{\triangle} is full rank.

We can reformulate the problem (2) as the variational problem with constraints in $W_{\triangle}(\Gamma')$ space: Find $u_{\triangle}^* \in W_{\triangle}(\Gamma')$ such that

$$J(u_{\wedge}^*) = \min J(v_{\wedge}) \tag{15}$$

subject to $v_{\triangle} \in W_{\triangle}(\Gamma')$ with constraints $B_{\triangle}v_{\triangle} = 0$. Here $J(v_{\triangle}) := \frac{1}{2}\langle \tilde{S}v_{\triangle}, v_{\triangle} \rangle - \langle \tilde{g}_{\triangle}, v_{\triangle} \rangle$ with \tilde{S} given in (11) and \tilde{g}_{\triangle} is easily obtained using the fact that it can be represented as $f = (f_I, f_H, f_{\Gamma \setminus H})$. Note that \tilde{S} is symmetric and positive definite since \tilde{A} has these properties. Introducing Lagrange multipliers $\lambda \in \hat{W}_{\triangle}(\Gamma)$, the problem (15) reduces to the saddle point problem of the form: $Find\ u_{\triangle}^* \in W_{\triangle}(\Gamma')\ and\ \lambda^* \in \hat{W}_{\triangle}(\Gamma)\ such\ that$

$$\begin{cases} \tilde{S}u_{\triangle}^* + B_{\triangle}^T \lambda^* = \tilde{g}_{\triangle} \\ B_{\triangle}u_{\wedge}^* = 0. \end{cases}$$
 (16)

Hence, (16) reduces to

$$F\lambda^* = g \tag{17}$$

where $F:=B_{\triangle}\tilde{S}^{-1}B_{\triangle}^{T}$ and $g:=B_{\triangle}\tilde{S}^{-1}\tilde{g}_{\triangle}$.

3.1 Dirichlet Preconditioner

We now define the FETI-DP preconditioner for F, see (17). Let $S'_{i,\Delta}$ be the Schur complement of S'_i , see (8), restricted to $W_{i,\Delta}(\Gamma'_i) \subset W_i(\Gamma'_i)$, i.e., taken S'_i on functions in $W_i(\Gamma'_i)$ which vanish on \mathcal{V}'_i . Let

$$S'_{\triangle} := \operatorname{diag}\{S'_{i,\triangle}\}_{i=1}^{N}.$$

In other words, $S'_{i,\triangle}$ is obtained from S'_i by deleting rows and columns corresponding to nodal values at nodal points of $\mathcal{V}'_i \subset \Gamma'_i$.

Let us introduce diagonal scaling operators $D_{\triangle}^{(i)}:W_{i,\triangle}(\Gamma_i')\to W_{i,\triangle}(\Gamma_i')$, for $1\leq i\leq N$. They are based on partial Schur complements of $S_{i,\triangle}'$ used in Dohrmann and Widlund [2013] for continuous FE discretization and this is know in the literature as the deluxe version of FETI-DP preconditioner. We first introduce $W_{i,\triangle,E_{ij}}(\Gamma_i')$ as the space of $u_i\in W_{i,\triangle}(\Gamma_i')$ which vanish on $\partial\Omega_i\setminus E_{ij}$ and $E_{ki}\subset\partial\Omega_k$ for $k\neq j$. Let $S_{i,\triangle,E_{ij}}'$ denote the Schur complement of $S_{i,\triangle}'$ restricted to $W_{i,\triangle,E_{ij}}$. In a similar way it is defined the restricted Schur complement $S_{i,\triangle,E_{ij}}'$. The operator $D_{\triangle}^{(i)}$ on $E_{ij}\subset\partial\Omega_i$ is defined as

$$D_{\triangle,E_{ij}}^{(i)} = (S'_{i,\triangle,E_{ij}} + S'_{j,\triangle,E_{ji}})^{-1} S'_{j,\triangle,E_{ji}}.$$
 (18)

Let $B_{D,\triangle}=(B_{\triangle}^{(1)}D_{\triangle}^{(1)},\cdots,B_{\triangle}^{(N)}D_{\triangle}^{(N)})$ and $P_{\triangle}:=B_{D,\triangle}^TB_{\triangle}$, which maps $W_{\triangle}(\Gamma')$ into itself. It can be checked straightforwardly that P_{\triangle} preserves jumps in the sense that $B_{\triangle}P_{\triangle}=B_{\triangle}$ and $P_{\triangle}^2=P_{\triangle}$.

In the FETI-DP method, the preconditioner ${\cal M}^{-1}$ is defined as follows:

$$M^{-1} = B_{D,\triangle} S_{\triangle}' B_{D,\triangle}^T = \sum_{i=1}^N B_{\triangle}^{(i)} D_{\triangle}^{(i)} S_{i,\triangle}' (D_{\triangle}^{(i)})^T (B_{\triangle}^{(i)})^T.$$

Note that M^{-1} is a block-diagonal matrix, and each block is invertible since $S'_{i,\triangle}$ and $D^{(i)}_{\triangle}$ are invertible and $B^{(i)}_{\triangle}$ is a full rank matrix. The following theorem holds.

Theorem 1. For any $\lambda \in \hat{W}_{\triangle}(\Gamma)$ it holds that

$$\langle M\lambda, \lambda \rangle \le \langle F\lambda, \lambda \rangle \le C \left(1 + \log \frac{H}{h}\right)^2 \langle M\lambda, \lambda \rangle$$

where $\log(\frac{H}{h}) := \max_{i=1}^{N} \log(\frac{H_i}{h_i})$, C is a positive constant independent of h_i , h_i/h_j , H_i , λ and the jumps of ρ_i .

The complete proof of Theorem 1 will be presented elsewhere.

Remark 3: The FETI-DP method is introduced for a composite DG discretization in the 3-D case in (Dryja and Sarkis [2014]). In order to extend

the deluxe scaling FETI-DP method for 3-D DG discretizations, we need to introduce the averaging of the deluxe operators for faces and edges. The face operators are introduced similarly as described as in (18) by replacing edges E_{ij} by faces F_{ij} . For the edge operators, consider for instance that E_{ijk} is an edge of Ω_i common to Ω_j and Ω_k . Let E_{jik} and E_{kij} be edges equal to E_{ijk} but belonging to Ω_j and Ω_k , respectively. Let $W_{i,\Delta,E_{ijk}}(\Gamma_i')$ be a subspace of $W_{i,\Delta}(\Gamma_i')$ with nonzero data on E_{ijk} , E_{jik} and E_{kij} only. Let $S'_{i,\Delta,E_{ijk}}$ be the restriction of $S'_{i,\Delta}$ to the space $W_{i,\Delta,E_{ijk}}$. In the same way we introduce $S'_{j,\Delta,E_{jik}}$ and $S'_{k,\Delta,E_{kij}}$. For the deluxe FETI-DP method with non-redundant Lagrange multipliers on edges, see Toselli and Widlund [2005], it is enough to define the edge averaging operators as follows:

$$D_{\Delta,E_{ijk},1}^{(i)} = (S_{i,\Delta,E_{ijk}}' + S_{j,\Delta,E_{jik}}' + S_{k,\Delta,E_{kij}}')^{-1} S_{j,\Delta,E_{jik}}', \text{ and }$$

$$D_{\Delta,E_{ijk},2}^{(i)} = (S_{i,\Delta,E_{ijk}}' + S_{j,\Delta,E_{jik}}' + S_{k,\Delta,E_{kij}}')^{-1} S_{k,\Delta,E_{kij}}'.$$
 In the 3-D case $B_{D,\triangle}$ is modified by setting $B_{D,\triangle} = (B_{\triangle}D_{\triangle}B_{\triangle}^T)^{-1}B_{\triangle}D_{\triangle}$ and $M^{-1} = B_{D,\triangle}S_{\triangle}'B_{D,\triangle}^T$ where $D_{\triangle} = \text{diag}\{D_{\triangle}^{(i)}\}$ and $D_{\triangle}^{(i)}$ is a block diagonal containing the averaging operators corresponding to faces and edges defined above. The operator $P_{\triangle} = B_{D,\triangle}^TB_{\triangle}$ preserves the jumps and is a projection.

Acknowledgments: The authors thank the anonymous referee for his suggestions that helped to improve the paper.

References

Clark R. Dohrmann and Olof B. Widlund. Some recent tools and a BDDC algorithm for 3D problems in H(curl). In *Domain decomposition methods* in science and engineering XX, volume 91 of Lect. Notes Comput. Sci. Eng., pages 15–25. Springer, 2013.

Maksymilian Dryja and Marcus Sarkis. 3-D FETI-DP preconditioners for composite finite element-discontinuous Galerkin methods. In *Proceedings of DD21 Conference (to appear)*, Lect. Notes Comput. Sci. Eng. Springer, Heidelberg, 2014.

Maksymilian Dryja, Juan Galvis, and Marcus Sarkis. A FETI-DP preconditioner for a composite finite element and discontinuous Galerkin method. SIAM J. Numer. Anal., 51(1):400–422, 2013.

Maksymilian Dryja, Juan Galvis, and Marcus Sarkis. The analysis of FETI-DP preconditioner for full DG discretization of elliptic problems. Submitted, 2014.

Andrea Toselli and Olof Widlund. Domain decomposition methods—algorithms and theory, volume 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2005. ISBN 3-540-20696-5.