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1 Introduction, differential and discrete problems

In this paper we consider a boundary value problem for elliptic second order
partial differential equations with highly discontinuous coefficients in a 2D
polygonal region Ω. The problem is discretized by a (full) DG method on tri-
angular elements using the space of piecewise linear functions. The goal of this
paper is to study a special version of FETI-DP preconditioner, called deluxe,
for the resulting discrete system of this discretization. The deluxe version for
continuous FE discretization is considered in Dohrmann and Widlund [2013],
for standard FETI-DP methods for composite DG method, see Dryja et al.
[2014], for full DG, see Dryja et al. [2014], and for conforming FEM, see the
book Toselli and Widlund [2005].

Now we discuss the continuous and discrete problems we take into consid-
eration for preconditioning.
Differential problem: Find u∗ex ∈ H1

0 (Ω) such that

a(u∗ex, v) = f(v) for all v ∈ H1
0 (Ω), (1)

a(u, v) :=
∑N
i=1

∫
Ωi
ρi∇u · ∇v dx and f(v) :=

∫
Ω
fv dx,

where the ρi are positive constants and f ∈ L2(Ω).

We assume that Ω = ∪Ni=1Ωi and the substructures Ωi are disjoint shaped
regular polygonal subregions of diameter O(Hi). We assume that the parti-
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tion {Ωi}Ni=1 is geometrically conforming, i.e., for all i and j with i 6= j, the
intersection ∂Ωi∩∂Ωj is either empty, a common corner or a common edge of
Ωi and Ωj . For clarity we stress that here and below the identifier edge means
a curve of continuous intervals and its two endpoints are called corners. The
collection of these corners on ∂Ωi are referred as the set of corners of Ωi. Let
us denote Ēij := ∂Ωi ∩ ∂Ωj as an edge of ∂Ωi and Ēji := ∂Ωj ∩ ∂Ωi as an

edge of ∂Ωj . Let us denote by J i,0H the set of indices j such that Ωj has a
common edge Eji with Ωi. To take into account edges of Ωi which belong to

the global boundary ∂Ω, let us introduce a set of indices J i,∂H to refer these

edges. The set of indices of all edges of Ωi is denoted by J iH = J i,0H ∪ J
i,∂
H .

Discrete problem: Let us introduce a shape regular and quasiuniform
triangulation (with triangular elements) T ih on Ωi and let hi represent its
mesh size. The resulting triangulation on Ω is matching across ∂Ωi. Let
Xi(Ωi) :=

∏
τ∈T i

h
Xτ be the product space of finite element (FE) spaces

Xτ which consists of linear functions on the element τ belonging to T ih . We
note that a function ui ∈ Xi(Ωi) allows discontinuities across elements of
T ih . We also note that we do not assume that functions in Xi(Ωi) vanish on
∂Ω. The global DG finite element space we consider is defined by X(Ω) =∏N
i=1Xi(Ωi) ≡ X1(Ω1)×X2(Ω2)× · · · ×XN (ΩN ).

We define E i,0h as the set of edges of the triangulation T ih which are inside

Ωi, and by E i,jh , for j ∈ J iH , the set of edges of the triangulation T ih which

are on Eij . An edge e ∈ E i,0h is shared by two elements denoted by τ+ and τ−
of T ih with outward unit normal vectors n+ and n−, respectively, and denote
{∇u} = 1

2 (∇uτ+ +∇uτ−) and [u] = uτ+n+ + uτ−n−.
The discrete problem we consider by the DG method is of the form: Find

u∗ = {u∗i }Ni=1 ∈ X(Ω) where u∗i ∈ Xi(Ωi), such that

ah(u∗, v) = f(v) for all v = {vi}Ni=1 ∈ X(Ω), (2)

where the global bilinear from ah and the right hand side f are assembled as

ah(u, v) :=

N∑
i=1

a′i(u, v) and f(v) :=

N∑
i=1

∫
Ωi

fvi dx.

Here, the local bilinear forms a′i, i = 1, . . . , N , are defined as

a′i(u, v) := ai(ui, vi) + s0,i(ui, vi) + p0,i(u, v) + s∂,i(u, v) + p∂,i(u, v) (3)

where ai, s0,i and p0,i are defined by,

ai(ui, vi) :=
∑
τ∈T i

h

∫
τ

ρi∇ui · ∇vi dx,

s0,i(ui, vi) := −
∑
e∈Ei,0h

∫
e

(ρi{∇ui} · [vi] + ρi{∇vi} · [ui]) ds, and
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p0,i(u, v) :=
∑
e∈Ei,0h

∫
e
δ ρihe

[ui].[vi] ds. The corresponding forms over the local

interface edges are given by

s∂,i(u, v) :=
∑
j∈J i

H

∑
e∈Ei,jh

∫
e

1

lij

(
ρij

∂ui
∂n

(vj − vi) + ρij
∂vi
∂n

(uj − ui)
)
ds,

p∂,i(u, v) :=
∑
j∈J i

H

∑
e∈Ei,jh

∫
e

δ

lij

ρij
he

(ui − uj)(vi − vj) ds,

respectively. Here ρij = 2ρiρj/(ρi + ρj), he denotes the length of the edge e.

When j ∈ J i,0H we set lij = 2, when j ∈ J i,∂H we denote the boundary edges
Eij ⊂ ∂Ωi by Ei∂ and set li∂ = 1, and on the artificial edge Eji ≡ E∂i we set
u∂ = 0 and v∂ = 0. The partial derivative ∂

∂n denotes the outward normal
derivative on ∂Ωi and δ is the penalty positive parameter.

The discrete formulation used here is convenient for our FETI-DP method.
We also mention that problem (2) has a unique solution for sufficiently large
δ and its error bound is known, see for example, Dryja et al. [2013, 2014].

2 Schur complement matrices and harmonic extensions

In this section, we describe the elimination of unknowns interior to the sub-
domains required on the FETI-DP formulation for DG discretizations.

Let the set of degrees of freedom associated to subdomain Ωi be defined by
Ω′i := Ωi

⋃
{∪j∈J i,0

H
Ēji}

i.e., it is the union of Ωi and the Ēji ⊂ ∂Ωj such that j ∈ J i,0H . Define

Γi := ∂Ωi\∂Ω and Γ ′i := Γi
⋃
{∪j∈J i,0

H
Ēji}. We also introduce the sets

Γ :=

N⋃
i=1

Γi, Γ ′ :=

N∏
i=1

Γ ′i , Ii := Ω′i\Γ ′i and I :=

N∏
i=1

Ii. (4)

Let Wi(Ω
′
i) be the FE space of functions defined by nodal values on Ω′i

Wi(Ω
′
i) = Wi(Ωi)×

∏
j∈J 0,i

H

Wi(Ēji), (5)

where Wi(Ωi) := Xi(Ωi) and Wi(Ēji) is the trace of the DG space Xj(Ωj)

on Ēji ⊂ ∂Ωj for all j ∈ J i,0H . A function u′i ∈ Wi(Ω
′
i) is defined by the

nodal values on Ω′i, i.e., by the nodal values on Ωi and the nodal values on

all adjacent faces Ēji for all j ∈ J i,0H . Below, we denote u′i by ui if it is not
confused with functions of Xi(Ωi). A function ui ∈ Wi(Ω

′
i) is represented

as ui = {(ui)i, {(ui)j}j∈J i,0
H
}, where (ui)i := ui |Ωi

(ui restricted to Ωi) and

(ui)j := ui |Ēji
(ui restricted to Ēji). Here and below we use the same notation

to identify both DG functions and their vector representations. Note that
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a′i(·, ·), see (3), is defined on Wi(Ω
′
i) ×Wi(Ω

′
i) with corresponding stiffness

matrix A′i defined by

a′i(ui, vi) = 〈A′iui, vi〉 ui, vi ∈Wi(Ω
′
i), (6)

where 〈ui, vi〉 denotes the `2 inner product of nodal values associated to
the vector space in consideration. We also represent ui ∈ Wi(Ω

′
i) as ui =

(ui,I , ui,Γ ′) where ui,Γ ′ represents values of ui at nodal points on Γ ′i and ui,I
at the interior nodal points in Ii, see (4). Hence, let us represent Wi(Ω

′
i) as

the vector spaces Wi(Ii)×Wi(Γ
′
i ). Using the representation ui = (ui,I , ui,Γ ′),

the matrix A′i can be represented as

A′i =

(
A′i,II A′i,IΓ ′
A′i,Γ ′I A

′
i,Γ ′Γ ′

)
. (7)

The Schur complement of A′i with respect to ui,Γ ′ is of the form

S′i := A′i,Γ ′Γ ′ −A′i,Γ ′I(A′i,II)−1A′i,IΓ ′ (8)

and introduce the block diagonal matrix S′ = diag{S′i}Ni=1.
Let us introduce the product space

W (Ω′) :=

N∏
i=1

Wi(Ω
′
i),

i.e., u ∈ W (Ω′) means that u = {ui}Ni=1 where ui ∈ Wi(Ω
′
i); see (5) for

the definition of Wi(Ω
′
i). Recall that we write (ui)i = ui |Ωi

(ui restricted

to Ωi) and (ui)j = ui |Ēji
(ui restricted to Ēji). Using the representation

ui = (ui,I , ui,Γ ′) where ui,I ∈Wi(Ii) and ui,Γ ′ ∈Wi(Γ
′
i ) were used in (7), let

us introduce the product space

W (Γ ′) :=

N∏
i=1

Wi(Γ
′
i ),

i.e., uΓ ′ ∈ W (Γ ′) means that uΓ ′ = {ui,Γ ′}Ni=1 where ui,Γ ′ ∈ Wi(Γ
′
i ). The

space W (Γ ′) which was defined on Γ ′ only, is also interpreted below as the
subspace of W (Ω′) of functions which are discrete H′i-harmonic in each Ωi.

3 FETI-DP with corner constraints

We now design a FETI-DP method for solving (2). We follow the abstract
approach described in pages 160-167 in Toselli and Widlund [2005].

We introduce the nodal points associated to the corner unknowns by
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V ′i := Vi
⋃
{∪j∈J i,0

H
∂Eji} where Vi := {∪j∈J i,0

H
∂Eij}.

We now consider the subspace W̃ (Ω′) ⊂W (Ω′) (and W̃ (Γ ′) ⊂W (Γ ′)) as
the space of functions which are continuous on all the V ′i as follows.

Definition 1 (Subspaces W̃ (Ω′) and W̃ (Γ ′)). We say that u = {ui}Ni=1 ∈
W̃ (Ω′) if it is continuous at the corners V ′i, that is, if for 1 ≤ i ≤ N we have

(ui)i(x) = (uj)i(x) at x ∈ ∂Eij for all j ∈ J i,0H , and (9)

(ui)j(x) = (uj)j(x) at x ∈ ∂Eji for all j ∈ J i,0H . (10)

Analogously we define W̃ (Γ ′).

Note that W̃ (Γ ′) ⊂ W (Γ ′.) Let Ã be the stiffness matrix which is ob-
tained by assembling the matrices A′i for 1 ≤ i ≤ N , from W (Ω′) to W̃ (Ω′).
Note that the matrix Ã is no longer block diagonal since there are couplings
between variables at the corners V ′i for 1 ≤ i ≤ N . We represent u ∈ W̃ (Ω′)
as u = (uI , uΠ , u4) where the subscript I refers to the interior degrees of

freedom at nodal points I =
∏N
i=1 Ii, the Π refers to the corners V ′i for all

1 ≤ i ≤ N , and the 4 refers to the remaining nodal points, i.e., the nodal
points of Γ ′i\V ′i, for all 1 ≤ i ≤ N . The vector u = (uI , uΠ , u4) ∈ W̃ (Ω′) is
obtained from the vector u = {ui}Ni=1 ∈ W (Ω′) using the equations (9) and
(10), i.e., the continuity of u on V ′i for all 1 ≤ i ≤ N . Using the decomposition
u = (uI , uΠ , u4) ∈ W̃ (Ω′) we can partition Ã as

Ã =

 A′II A′IΠ A′I4
A′ΠI ÃΠΠ A′Π4
A′4I A

′
4Π A′44

 .

We note that the only couplings across subdomains are through the variables
Π where the matrix Ã is subassembled.

A Schur complement of Ã with respect to the 4-unknowns (eliminating
the I- and the Π-unknowns) is of the form

S̃ := A′44 − (A′4I A
′
4Π)

(
A′II A′IΠ
A′ΠI ÃΠΠ

)−1(
A′I4
A′Π4

)
. (11)

A vector u ∈ W̃ (Γ ′) can uniquely be represented by u = (uΠ , u4), there-

fore, we can represent W̃ (Γ ′) = ŴΠ(Γ ′) × W4(Γ ′), where ŴΠ(Γ ′) refers

to the Π-degrees of freedom of W̃ (Γ ′) while W4(Γ ′) to the 4-degrees of

freedom of W̃ (Γ ′). The vector space W4(Γ ′) can be decomposed as

W4(Γ ′) =

N∏
i=1

Wi,4(Γ ′i ) (12)
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where the local space Wi,4(Γ ′i ) refers to the degrees of freedom associated

to the nodes of Γ ′i\V ′i for 1 ≤ i ≤ N . Hence, a vector u ∈ W̃ (Γ ′) can be

represented as u = (uΠ , u4) with uΠ ∈ ŴΠ(Γ ′) and u4 = {ui,4}Ni=1 ∈
W4(Γ ′) where ui,4 ∈ Wi,4(Γ ′i ). Note that S̃, see (11), is defined on the
vector space W4(Γ ′).

In order to measure the jump of u4 ∈ W4(Γ ′) across the 4-nodes let us

introduce the space Ŵ4(Γ ) defined by

Ŵ4(Γ ) =

N∏
i=1

Xi(Γi\Vi),

where Xi(Γi\Vi) is the restriction of Xi(Ωi) to Γi\Vi. To define the jumping
matrix B4 : W4(Γ ′) → Ŵ4(Γ ), let u4 = {ui,4}Ni=1 ∈ W4(Γ ′) and let

v := B4u where v = {vi}Ni=1 ∈ Ŵ4(Γ ) is defined by

vi = (ui,4)i − (uj,4)i on Eijh for all j ∈ J i,0H , (13)

where Eijh is the set of interior nodal points on Eij . The jumping matrix B4
can be written as

B4 = (B
(1)
4 , B

(2)
4 , · · · , B(N)

4 ), (14)

where the rectangular matrix B
(i)
4 consists of columns of B4 attributed to

the (i) components of functions of Wi,4(Γ ′i ) of the product space W4(Γ ′),
see (12). The entries of the rectangular matrix consist of values of {0, 1,−1}.
It is easy to see that the Range B4 = Ŵ4(Γ ), so B4 is full rank.

We can reformulate the problem (2) as the variational problem with con-
straints in W4(Γ ′) space: Find u∗4 ∈W4(Γ ′) such that

J(u∗4) = minJ(v4) (15)

subject to v4 ∈ W4(Γ ′) with constraints B4v4 = 0. Here J(v4) :=
1
2 〈S̃v4, v4〉 − 〈g̃4, v4〉 with S̃ given in (11) and g̃4 is easily obtained us-

ing the fact that it can be represented as f = (fI , fΠ , fΓ\Π). Note that S̃

is symmetric and positive definite since Ã has these properties. Introducing
Lagrange multipliers λ ∈ Ŵ4(Γ ), the problem (15) reduces to the saddle

point problem of the form: Find u∗4 ∈W4(Γ ′) and λ∗ ∈ Ŵ4(Γ ) such that{
S̃u∗4 + BT4λ

∗ = g̃4
B4u

∗
4 = 0.

(16)

Hence, (16) reduces to
Fλ∗ = g (17)

where F := B4S̃
−1BT4 and g := B4S̃

−1g̃4.
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3.1 Dirichlet Preconditioner

We now define the FETI-DP preconditioner for F , see (17). Let S′i,4 be the
Schur complement of S′i, see (8), restricted to Wi,4(Γ ′i ) ⊂Wi(Γ

′
i ), i.e., taken

S′i on functions in Wi(Γ
′
i ) which vanish on V ′i. Let

S′4 := diag{S′i,4}Ni=1.

In other words, S′i,4 is obtained from S′i by deleting rows and columns cor-
responding to nodal values at nodal points of V ′i ⊂ Γ ′i .

Let us introduce diagonal scaling operators D
(i)
4 : Wi,4(Γ ′i ) → Wi,4(Γ ′i ),

for 1 ≤ i ≤ N . They are based on partial Schur complements of S′i,4 used in
Dohrmann and Widlund [2013] for continuous FE discretization and this is
know in the literature as the deluxe version of FETI-DP preconditioner. We
first introduce Wi,4,Eij

(Γ ′i ) as the space of ui ∈ Wi,4(Γ ′i ) which vanish on
∂Ωi\Eij and Eki ⊂ ∂Ωk for k 6= j. Let S′i,4,Eij

denote the Schur complement

of S′i,4 restricted toWi,4,Eij
. In a similar way it is defined the restricted Schur

complement S′j,4,Eji
. The operator D

(i)
4 on Eij ⊂ ∂Ωi is defined as

D
(i)
4,Eij

= (S′i,4,Eij
+ S′j,4,Eji

)−1S′j,4,Eji
. (18)

Let BD,4 = (B
(1)
4 D

(1)
4 , · · · , B(N)

4 D
(N)
4 ) and P4 := BTD,4B4, which maps

W4(Γ ′) into itself. It can be checked straightforwardly that P4 preserves
jumps in the sense that B4P4 = B4 and P 2

4 = P4.

In the FETI-DP method, the preconditioner M−1 is defined as follows:

M−1 = BD,4S
′
4B

T
D,4 =

N∑
i=1

B
(i)
4 D

(i)
4 S

′
i,4(D

(i)
4 )T (B

(i)
4 )T .

Note that M−1 is a block-diagonal matrix, and each block is invertible since

S′i,4 and D
(i)
4 are invertible and B

(i)
4 is a full rank matrix. The following

theorem holds.

Theorem 1. For any λ ∈ Ŵ4(Γ ) it holds that

〈Mλ, λ〉 ≤ 〈Fλ, λ〉 ≤ C

(
1 + log

H

h

)2

〈Mλ, λ〉

where log(Hh ) := maxNi=1 log(Hi

hi
), C is a positive constant independent of hi,

hi/hj, Hi, λ and the jumps of ρi.

The complete proof of Theorem 1 will be presented elsewhere.

Remark 3: The FETI-DP method is introduced for a composite DG
discretization in the 3-D case in (Dryja and Sarkis [2014]). In order to extend
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the deluxe scaling FETI-DP method for 3-D DG discretizations, we need to
introduce the averaging of the deluxe operators for faces and edges. The face
operators are introduced similarly as described as in (18) by replacing edges
Eij by faces Fij . For the edge operators, consider for instance that Eijk is an
edge of Ωi common to Ωj and Ωk. Let Ejik and Ekij be edges equal to Eijk
but belonging to Ωj and Ωk, respectively. Let Wi,∆,Eijk

(Γ ′i ) be a subspace
of Wi,∆(Γ ′i ) with nonzero data on Eijk, Ejik and Ekij only. Let S′i,∆,Eijk

be

the restriction of S′i,∆ to the space Wi,∆,Eijk
. In the same way we introduce

S′j,∆,Ejik
and S′k,∆,Ekij

. For the deluxe FETI-DP method with non-redundant

Lagrange multipliers on edges, see Toselli and Widlund [2005], it is enough
to define the edge averaging operators as follows:

D
(i)
∆,Eijk,1

= (S′i,∆,Eijk
+ S′j,∆,Ejik

+ S′k,∆,Ekij
)−1S′j,∆,Ejik

, and

D
(i)
∆,Eijk,2

= (S′i,∆,Eijk
+ S′j,∆,Ejik

+ S′k,∆,Ekij
)−1S′k,∆,Ekij

.

In the 3-D case BD,4 is modified by setting BD,4 = (B4D4B
T
4)−1B4D4

and M−1 = BD,4S
′
4B

T
D,4 where D4 = diag{D(i)

4 } and D
(i)
4 is a block di-

agonal containing the averaging operators corresponding to faces and edges
defined above. The operator P4 = BTD,4B4 preserves the jumps and is a
projection.
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