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1 Introduction, differential and discrete problems

In this paper we consider a boundary value problem for elliptic second order
partial differential equations with highly discontinuous coefficients in a 2D
polygonal region 2. The problem is discretized by a (full) DG method on tri-
angular elements using the space of piecewise linear functions. The goal of this
paper is to study a special version of FETI-DP preconditioner, called deluze,
for the resulting discrete system of this discretization. The deluxe version for
continuous FE discretization is considered in Dohrmann and Widlund [2013],
for standard FETI-DP methods for composite DG method, see Dryja et al.
[2014], for full DG, see Dryja et al. [2014], and for conforming FEM, see the
book Toselli and Widlund [2005].

Now we discuss the continuous and discrete problems we take into consid-
eration for preconditioning.
Differential problem: Find u?, € Hg(£2) such that

a(ul,,v) = f(v) forall v € HL(R), (1)
a(u,v) = ZZ]\LI Jo, piVu-Vodz and  f(v):= [, foda,

where the p; are positive constants and f € L?(2).

We assume that 2 = UY ; 2; and the substructures {2; are disjoint shaped
regular polygonal subregions of diameter O(H;). We assume that the parti-
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tion {2;}¥, is geometrically conforming, i.e., for all i and j with 7 # j, the
intersection 042;N02; is either empty, a common corner or a common edge of
§2; and §2;. For clarity we stress that here and below the identifier edge means
a curve of continuous intervals and its two endpoints are called corners. The
collection of these corners on 0f2; are referred as the set of corners of £2;. Let
us denote Eij = 042; N 02; as an edge of 0f2; and Eji = 0§2; N 0f2; as an
edge of 02;. Let us denote by J, ;I’O the set of indices j such that (2; has a
common edge F;; with §2;. To take into account edges of (2; which belong to
the global boundary 942, let us introduce a set of indices J. ;}a to refer these
edges. The set of indices of all edges of §2; is denoted by \7};[ = j;I’O U \7;'1,3.

Discrete problem: Let us introduce a shape regular and quasiuniform
triangulation (with triangular elements) 7, on (2; and let h; represent its
mesh size. The resulting triangulation on {2 is matching across 02;. Let
X (£2) = HreT;‘ X, be the product space of finite element (FE) spaces
X, which consists of linear functions on the element 7 belonging to 7,'. We
note that a function u; € X;(£2;) allows discontinuities across elements of

T,¢. We also note that we do not assume that functions in X;(£2;) vanish on
012. The global DG finite element space we consider is defined by X (§2) =
[T, Xi(92:) = X1 (621) x Xa(922) % -+ x Xn(£2n).

We define 52’0 as the set of edges of the triangulation 7, which are inside
£2;, and by S,i’j , for j € J4, the set of edges of the triangulation 7" which
are on F;;. An edge e € EZL’O is shared by two elements denoted by 7, and 7_
of 7;" with outward unit normal vectors n™ and n~, respectively, and denote
{Vu} = L(Vu-, + Vu,_) and [u] = ur,n" +u, n~.

The discrete problem we consider by the DG method is of the form: Find
u* = {uf}N, € X(02) where u} € X;(£2;), such that

an(u*,v) = f(v)  forallv={v}Y, € X(2), (2)

where the global bilinear from a, and the right hand side f are assembled as

N N
ap(u,v) == Za;(u,u) and f(v):= Z/ fu;dx.
i=1 i=1 "%

Here, the local bilinear forms af, i = 1,..., N, are defined as
a;(u,v) == a;(ui, v;) + 80, (ui, vi) + po.i(u, v) + so.i(u,v) + po.i(u,v)  (3)

where a;, s9; and po; are defined by,

ai(u;,v;) == Z /inulevZ- dx,
TET; T

50,6 (Ui, v5) == — Zeeg}’ivo L. (pi{Vui} - [vi] + pi{Vvi} - [ui]) ds, and



A deluxe FETI-DP for full DG discretization 3

Po,i(u,v) := eegb o [ 6 [us].[v5] ds. The corresponding forms over the local
interface edges are given by

8uz ov;
361 u, U Z Z / (ng Uy )+p1] on ( ul)) dS,

JET} el

postwny= 3 50 [0 O L3 1, — ) (s — vy) ds,
JET ec)

respectively. Here Pij = 2[)10]/(01 +05), he denotes the length of the edge e.
When j € ._7 we set l;; = 2, when j € T 1 we denote the boundary edges
E;; C 062; by E;p and set ;9 = 1, and on the artificial edge E}; = Fg; we set
uy = 0 and vy = 0. The partial derivative % denotes the outward normal
derivative on 0f2; and ¢ is the penalty positive parameter.

The discrete formulation used here is convenient for our FETI-DP method.
We also mention that problem (2) has a unique solution for sufficiently large
¢ and its error bound is known, see for example, Dryja et al. [2013, 2014].

2 Schur complement matrices and harmonic extensions

In this section, we describe the elimination of unknowns interior to the sub-
domains required on the FETI-DP formulation for DG discretizations.
Let the set of degrees of freedom associated to subdomain 2; be defined by

_Q; = ﬁz U {UjGJ;;OEji}
i.e., it is the union of 2; and the Ej;; C 9f2; such that j € J5;°. Define
I = 002\002 and IT =T} J{U, 750 F;:}. We also introduce the sets

N

N N
r=\Jn, r ::HF,.’, I == 2\I}  and I::HIi. (4)

i=1 i=1 i=1

Let W;(£2}) be the FE space of functions defined by nodal values on {2

Wi(2) = Wi(2) x [ Wul(Ej), ()

jeTy’

where W;(£2;) := X;(£2;) and W;(E;;) is the trace of the DG space X;(§2;)
on Ej; C 892 for all j € J5;°. A function u) € W;(s2}) is defined by the
nodal values on Q i.e., by the nodal values on {2; and the nodal values on
all adjacent faces E for all j € J, HO Below, we denote ) by u; if it is not
confused with functlons of X;(£2;). A function u; € W; (Q{) is represented
as u; = {(w)s, {(ws); }]ET o}, where (u;); := u; g, (u; restricted to £2;) and
(ui)j := u;g,, (u; restricted to Ej;). Here and below we use the same notation
to identify both DG functions and their vector representations. Note that
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ai(-,-), see (3), is defined on W;(£2)) x W;(£2}) with corresponding stiffness
matrix A} defined by

aj(us, v;) = (Afug, v;)  ug,v; € Wi(927), (6)

where (u;,v;) denotes the ¢y inner product of nodal values associated to
the vector space in consideration. We also represent u; € W;(§2]) as u; =
(ws,1,ui, ) where u; v represents values of u; at nodal points on I} and u; s
at the interior nodal points in I;, see (4). Hence, let us represent W;((2}) as
the vector spaces W;(I;) x W;(I}). Using the representation u; = (u; 1, u;,r),
the matrix A’ can be represented as

/ /
Al = ( Ai,][ Ai,IF’ ) _ (7)

H A;,I“/I A;,I_‘/F/
The Schur complement of A} with respect to u; p is of the form
— —1
Si = A} pipe = A pry (AL )™ Al (8)

and introduce the block diagonal matrix S’ = diag{S;} ;.
Let us introduce the product space

N
W(') =[] wi(s2),

i=1
ie, u € W(') means that u = {u;}Y, where u; € W;(§2}); see (5) for
the definition of W;(§2;). Recall that we write (u;); = u; @, (ui restricted
to £2;) and (u;); = u;)g,, (ui restricted to Ej;). Using the representation
u; = (Wi, 1, ws, ) where u; 1 € Wi(I;) and w; € W;(I7}) were used in (7), let
us introduce the product space

i.e., urr € W(I") means that ur = {u; 0}, where u; r» € W;(I}). The
space W(I"") which was defined on I only, is also interpreted below as the
subspace of W (£2’) of functions which are discrete H}-harmonic in each (2;.

3 FETI-DP with corner constraints

We now design a FETI-DP method for solving (2). We follow the abstract
approach described in pages 160-167 in Toselli and Widlund [2005].
We introduce the nodal points associated to the corner unknowns by
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/ P— . p— .
Vi = Vz U {UjGJ;I’O 8E]‘i} where Vz = {UjGJ;I’O 8Eij}.

We now consider the subspace W (£2') € W (') (and W (I") ¢ W(I")) as
the space of functions which are continuous on all the V! as follows.

Definition 1 (Subspaces W (') and W (I")). We say that u = {u;}Y, €

W ((2') if it is continuous at the corners V!, that is, if for 1 < ¢ < N we have
(ui)i(x) = (uj)i(z) at x € OE;; forall je j;l’o, and 9)

(ui);(x) = (uj);(z) at =€ dE;; forall je J;° (10)
Analogously we define W (I").

Note that W(I") € W(I".) Let A be the stiffness matrix which is ob-
tained by assembling the matrices A for 1 <i < N, from W (£2') to W (£2).
Note that the matrix A is no longer block diagonal since there are couplings
between variables at the corners V! for 1 <i < N. We represent u € W (£2')
as u = (ur,um,us) where the subscript I refers to the interior degrees of
freedom at nodal points I = Hivzl I;, the IT refers to the corners V/ for all
1 < i < N, and the A refers to the remaining nodal points, i.e., the nodal
points of I7\V!, for all 1 <4 < N. The vector u = (ur,ur,us) € W(£2') is
obtained from the vector u = {u;}Y; € W (') using the equations (9) and
(10), i.e., the continuity of w on V} for all 1 <14 < N. Using the decomposition
u = (ur,umg,us) € W(82') we can partition A as

X A Atn Ala
A= | Ay Anm Ag o
! ! !
Apnr Aam Ann
We note that the only couplings across subdomains are through the variables
II where the matrix A is subassembled.

A Schur complement of A with respect to the A-unknowns (eliminating
the I- and the IT-unknowns) is of the form

~ A/ A/ 71 AI
SZZ 12 _ / ! II ~IH) ( /IA)_ 11
on — (Al M>( WAy (e (1)

A vector u € W (I") can uniquely be represented by u = (usz,un), there-
fore, we can represent W (I") = Wi (I") x Wa(I"), where Wy (I") refers
to the IT-degrees of freedom of W (I") while WA (I") to the A-degrees of
freedom of W (I"). The vector space Wa (I") can be decomposed as

Wa(I") = [] Waa (L)) (12)
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where the local space W; a(I7}) refers to the degrees of freedom associated
to the nodes of I7\V/ for 1 < i < N. Hence, a vector u € W(I") can be
represented as u = (uyr,us) with ug € Wr(I") and ua = {u; A}, €
Wa(I") where ujn € Wi a(I7). Note that S, see (11), is defined on the
vector space Wa (I).

In order to measure the jump of ua € Wa(I"”) across the A-nodes let us
introduce the space Wa (I') defined by

Wa(D) = H X;(I\Vy),

where X;(I73\V;) is the restriction of X;(£2;) to I'}\V;. To define the jumping
matrix Ba : Wa(I") = Wa(D), let ua = {u; a}¥; € Wa(I”) and let
v = Bau where v = {v;}}¥.; € W (I') is defined by

Vi = (Ui,A)i — (Uj,A)i on Eijh for all j S j;;l’o, (13)

where Ejj, is the set of interior nodal points on Ej;. The jumping matrix Ba
can be written as

where the rectangular matrix BX) consists of columns of B attributed to
the () components of functions of W; A(I7) of the product space Wa (I"'),
see (12). The entries of the rectangular matrix consist of values of {0,1, —1}.
It is easy to see that the Range Ba = WA(F), so B is full rank.

We can reformulate the problem (2) as the variational problem with con-
straints in Wa (I"') space: Find uly € Wa(I") such that

J(ux) = min J(va) (15)

subject to va € Wa(I") with constraints Bava = 0. Here J(va) =
%<SUA,’UA> — (Ga,va) with S given in (11) and §a is easily obtained us-
ing the fact that it can be represented as f = (fr, fir, fr\ir). Note that S
is symmetric and positive definite since A has these properties. Introducing
Lagrange multipliers A € Wa(I"), the problem (15) reduces to the saddle
point problem of the form: Find u% € Wa (") and \* € Wa(I') such that
{ Su”‘%k + BIX* = ga (16)
BAUA = 0

Hence, (16) reduces to
F\X=g (17)

where F := BAS™'BY and g := BAS ™ 'ga.
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3.1 Dirichlet Preconditioner

We now define the FETI-DP preconditioner for F', see (17). Let S; o be the
Schur complement of S}, see (8), restricted to W, A(F') C Wi(I7), i.e., taken
S! on functions in W;(I7) which vanish on V,. Let

Sy = diag{sz{,A}ij\il'

In other words, S; » is obtained from S; by deleting rows and columns cor-
responding to nodal values at nodal points of V/ C I7.

Let us introduce diagonal scaling operators D(i) Wi a(l]) = Wi n(IY),
for 1 <i < N. They are based on partial Schur complements of S! . used in
Dohrmann and Widlund [2013] for continuous FE discretization and this is
know in the literature as the deluxe version of FETI-DP preconditioner. We
first introduce W; A g,; (I7) as the space of u; € W; A(I7) which vanish on

K2 K2

OfL\ E;; and Ey,; C 082y, for k # j. Let S;)A}Eij denote the Schur complement
of §; A restricted to Wi A g, . In a similar way it is defined the restricted Schur

complement S , p .. The operator DX) on E;; C 012; is defined as

D(AZ),E“ (S,AE,, +S AE”) 1S§,A,Ej,i~ (18)

Let Bpa = (BYWDY, - BYDY) and Po == Bf ,Ba, which maps
Wa(I'") into itself. It can be checked straightforwardly that Pa preserves
jumps in the sense that Ba Pa = Ba and P = Pa.

In the FETI-DP method, the preconditioner M ! is defined as follows:

N
M~ = BpaSpBh o = BRDRS, A(DD) (B

i=1

Note that M ! is a block-diagonal matrix, and each block is invertible since

Si o and D(A) are invertible and B() is a full rank matrix. The following
theorem holds.

Theorem 1. For any A\ € Wa(I') it holds that
7\ 2
(MM < (FAN) < C <1 +log h) (M)

where log(Z) := max¥| log(44), C is a positive constant independent of h;,
hi/h;, H;, X\ and the jumps of Pi-

The complete proof of Theorem 1 will be presented elsewhere.

Remark 3: The FETI-DP method is introduced for a composite DG
discretization in the 3-D case in (Dryja and Sarkis [2014]). In order to extend
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the deluxe scaling FETI-DP method for 3-D DG discretizations, we need to
introduce the averaging of the deluxe operators for faces and edges. The face
operators are introduced similarly as described as in (18) by replacing edges
E;; by faces Fj;. For the edge operators, consider for instance that E;j;; is an
edge of (2; common to {2; and (2. Let Ej;; and Ey,;; be edges equal to Eyjp
but belonging to (2; and (2, respectively. Let W; A g,,, (I7) be a subspace
of Wi a(I7) with nonzero data on Eyjk, Eji, and Eg;; only. Let Si 4 g, be
the restriction of S} 4 to the space W; a g,,, - In the same way we introduce
Sia,8,,, a0d S A g, - For the deluxe FETI-DP method with non-redundant
Lagrange multipliers on edges, see Toselli and Widlund [2005], it is enough
to define the edge averaging operators as follows:

(AZ),Eijk,l = (St aEy T 57080 T S6aE50) S A8, and

DY pys = (Sham + 55000+ Stam,) Shan.,

In the 3-D case Bp a is modified by setting Bp A = (BADABz)*lBADA
and M~' = Bp A8, Bh o where Da = diag{D%'} and DY is a block di-
agonal containing the averaging operators corresponding to faces and edges
defined above. The operator Pa = BIT), ABa preserves the jumps and is a
projection.
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