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1 Introduction

The robust preconditioning of linear systems of algebraic equations arising
from discretizations of partial differential equations (PDE) is a fastly devel-
oping area of scientific research. In many applications these systems are very
large, sparse and therefore it is vital to construct (quasi-)optimal iterative
methods that converge independently of problem parameters.

The most established techniques to accomplish this objective are domain
decomposition (DD), see, e.g., Toselli and Widlund [2005], Mathew [2008],
and multigrid (MG)/algebraic multilevel iteration (AMLI) methods, see,
e.g., Hackbusch [2003], Trottenberg et al. [2001], Vassilevski [2008].

As demonstrated by Klawonn et al. [2002], Toselli and Widlund [2005],
Graham et al. [2007], two-level DD methods can be proven to be robust for
scalar elliptic PDE with varying coefficient if the variations of the coefficient
inside the coarse grid cells are assumed to be bounded. A key tool in the
classical analysis of overlapping DD methods is the Poincaré inequality or
its weighted analog as for problems with highly varying coefficients. It is
well-known that the weighted Poincaré inequality holds only under certain
conditions, e.g., in case of quasi-monotonic coefficients, see Sarkis [1994]. The
concept of quasi-monotonic coefficients has been further developed in Pech-
stein and Scheichl [2008] for the convergence analysis of finite element tearing
and interconnecting (FETI) methods.

Recently the robustness of DD methods has also been achieved for prob-
lems with general coefficient variations using coarse spaces that are con-
structed by solving local generalized eigenvalue problems, see, e.g., Efendiev
et al. [2012], Galvis and Efendiev [2010], Spillane et al. [2014].

RICAM, Altenberger Str. 69, 4040 Linz, Austria johannes.kraus@oeaw.ac.at · IICT,
Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25A, 1113 Sofia, Bulgaria

mariq@parallel.bas.bg

1



2 Johannes Kraus and Maria Lymbery

In view of computational complexity, MG methods have been known to
be most efficient as they have demonstrated optimality with respect to the
problem size, see Hackbusch [2003], Vassilevski [2008]. Their design, however,
needs careful adaptation for problems with large variations in the physical
problem parameters. The AMLI framework contributes in achieving this goal,
e.g. by providing more general polynomial acceleration techniques or Krylov
cycles, see Axelsson and Vassilevski [1989, 1990, 1994], Kraus et al. [2012].

The idea of integrating domain decomposition techniques into multigrid
methods can be found as early as in Kuznetsov [1989]. The method that
is presented in the following combines DD and MG techniques with those
from auxiliary space preconditioning, see Xu [1996]. It is related to substruc-
turing methods like FETI, see Farhat and Roux [1991], and balancing domain
decomposition (BDD) methods, see Mandel [1993].

The most advanced of these methods, BDDC (BDD based on constraints),
see Dohrmann [2003], and FETI-DP (FETI dual-primal), see Farhat et al.
[2001], can be formulated and analyzed in a common algebraic framework,
see Mandel and Dohrmann [2003], Mandel et al. [2005], Mandel and Soused́ık
[2007]. The BDDC method enforces continuity across substructure interfaces
by a certain averaging operator. The additional constraints can be interpreted
as subspace corrections where coarse basis functions are subject to energy
minimization. From this point of view the BDDC method has a high degree
of similarity with the present approach.

However, contrary to BDDC, the auxiliary space multigrid (ASMG)
method considered here naturally allows overlapping of subdomains and
coarse degrees of freedom (DOF) are associated in general not only with
the interfaces of subdomains but also with their interior. Moreover, the aim
is to define a full multilevel method by recursive application of a two-level
method. In contrary to standard (variational) multigrid algorithms coarse-
grid correction is replaced by an auxiliary space correction. The coarse-grid
operator then appears as the exact Schur complement of the auxiliary ma-
trix and defines an additive approximation of the Schur complement of the
original system, see Kraus [2006, 2012].

The purpose of the present paper is to summarize the main steps of the
construction of the ASMG method recently proposed in Kraus et al. [2014]
on a less technical level (Sections 2 and 4) and further to discuss its spectral
properties and robustness with respect to highly varying coefficients (Sec-
tion 3). The latter issue is also illustrated by numerical tests (Section 5).

2 Auxiliary space two-grid preconditioner

Consider the linear system of algebraic equations

Au = f (1)
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obtained after a finite element (FE) discretization of a partial differential
equation (PDE) defined over a domain Ω, where A denotes the global stiffness
matrix and f is a given right-hand side vector.

Consider a covering of Ω by n (overlapping) subdomains Ωi, i.e., Ω =⋃n
i=1Ωi. Assume that for each subdomain Ωi there is a symmetric positive

semi-definite (SPSD) subdomain matrix Ai and that A =
∑n
i=1R

T
i AiRi

where Ri restricts a global vector v ∈ V = IRN to the local space Vi = IRni

related to Ωi. In practice the matrices Ai are assembled from scaled element
matrices where the scaling factors account for the overlap of the subdomains.
The DOF are split into two groups, coarse and fine, and the matrices A and
Ai are partitioned accordingly into two-by-two blocks, where the lower right
blocks (with index 22) are associated with coarse DOF, i.e.,

A =

[
A11 A12

A21 A22

]
, Ai =

[
Ai:11 Ai:12
Ai:21 Ai:22

]
, i = 1, . . . , n.

Introduce the following auxiliary domain decomposition matrix

Ã =



A1:11 A1:12R1:2

A2:11 A2:12R2:2

. . .
...

An:11 An:12Rn:2

RT1:2A1:21 R
T
2:2A2:21 . . . R

T
n:2An:21

n∑
i=1

RTi:2Ai:22Ri:2


. (2)

Denote Ã11 = diag{A1:11, . . . , An:11}, Ã22 = A22 =
∑n
i=1R

T
i:2Ai:22Ri:2, i.e.,

Ã =

[
Ã11 Ã12

Ã21 Ã22

]
. The matrices A ∈ IRN×N and Ã ∈ IRÑ×Ñ are related via

A = RÃRT where R =

[
R1 0
0 I2

]
, R1 =

[
RT1:1 . . . R

T
n:1

]
, A11 = R1Ã11R

T
1 .

Definition 1. (Kraus [2012]) The additive Schur complement approximation

(ASCA) of S = A22−A21A
−1
11 A12 is defined as the Schur complement Q of Ã:

Q := Ã22 − Ã21Ã
−1
11 Ã12 =

n∑
i=1

RTi:2(Ai:22 −Ai:21A−1i:11Ai:12)Ri:2 (3)

Next define a surjective mapping ΠD̃ : Ṽ → V by

ΠD̃ = (RD̃RT )−1RD̃, (4)

where Ṽ = IRÑ and D̃ is a two-by-two block-diagonal SPD matrix.
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The proposed auxiliary space two-grid preconditioner is defined by

B−1 := M
−1

+ (I −M−TA)C−1(I −AM−1) (5)

where the operator M in (5) denotes an A-norm convergent smoother, i.e.
‖I −M−1A‖A ≤ 1, and M = M(M + MT − A)−1MT is the corresponding
symmetrized smoother. The matrix C defines a fictitious (auxiliary) space
preconditioner approximating A and is given by

C−1 = ΠD̃Ã
−1ΠT

D̃
. (6)

Denote Π = (I − M−TA)ΠD̃ = (I − M−TA)(RD̃RT )−1RD̃, then the
preconditioner (5) can also be presented as

B−1 = M
−1

+ΠÃ−1ΠT . (7)

The proposed auxiliary space two-grid method differs from the classical
two-grid methods in the replacement of the coarse grid correction step by a
subspace correction with iteration matrix I − C−1A.

3 Spectral properties and robustness

As it has been shown in Kraus et al. [2014] the condition number of the
two-grid preconditioner defined in (7) satisfies the estimate

κ(B−1A) ≤ (c̄+ cΠ)(c + η)/c,

where ρA = λmax(A), cΠ is the constant in the estimate ‖Πṽ‖2A ≤ cΠ‖ṽ‖2Ã
for all ṽ ∈ Ṽ , and the constants c̄, c and η characterize the smoother, i.e.,

c〈v,v〉 ≤ ρA〈M
−1

v,v〉 ≤ c̄〈v,v〉 and ‖M−TAv‖2 ≤ η

ρA
‖v‖2A.

Moreover, the ASCA defined in (3) is spectrally equivalent to S, i.e. Q ' S:

Theorem 1. (Kraus et al. [2014]) Denote πD̃ = RTΠD̃ where ΠD̃ is defined

as in (4) and D̃ is an arbitrary two-by-two block-diagonal SPD matrix for

the same fine-coarse partitioning of DOF as used in the construction of Ã.
Then 〈A−1u,u〉 ≤ 〈ΠD̃Ã

−1ΠT
D̃

u,u〉 ≤ c 〈A−1u,u〉 ∀u ∈ V where c := ‖πD̃‖
2
Ã

.
Hence,

1

c
〈Sv2,v2〉 ≤ 〈Qv2,v2〉 ≤ 〈Sv2,v2〉 ∀v2. (8)

The upper bound in (8) is sharp, the lower bound is sharp for D̃ =

[
Ã11 0
0 I

]
.
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To verify that 〈Sv2,v2〉 ≤ c〈Qv2,v2〉 is robust with respect to an arbitrary
variation of an elementwise constant coefficient α(x) = αe for all x ∈ e
and all elements e, see (15), one has to consider all possible distributions of
{αe} on the finest mesh. However, in the following we will show that the
worst condition number (largest values of c) is obtained for a certain binary
distribution of {αe} so it suffices to study distributions of this type.

Let ne denote the number of elements e and consider first an arbitrary dis-
tribution {αe} of a piecewise constant coefficient where αe ∈ (0, 1] for all e.
Further, let A denote the global stiffness matrix corresponding to this distri-
bution. Then there exists a set of binary distributions {Ci : i = 1, 2, . . . , ne}
with Ci = {αej : j = 1, 2, . . . , ne, αej = βei if j = i and αej = δ else} for
some constants 0 < δ ≤ βei ≤ 1 such that A =

∑ne

i=1Ai where Ai is the
global stiffness matrix corresponding to the distribution Ci. It is easy to see
that if A is SPD then Ai is SPD for all i. Now, let Si denote the exact Schur
complement of Ai and S be the Schur complement of A. Moreover, let Qi
denote the ASCA corresponding to Ai, i.e., Qi ' Si where Qi is the exact
Schur complement of Ãi, cf. (2).

Lemma 1. Using the above notation, assume that

1

cj
〈Sjv2,v2〉 ≤ 〈Qjv2,v2〉 ≤ 〈Sjv2,v2〉 ∀v2 and j = 1, . . . , ne. (9)

Further, denote cmax = maxi∈{1,...,ne}{ci}. Then the following relations hold:

1

cmax
〈Sv2,v2〉 ≤ 〈Qv2,v2〉 ≤ 〈Sv2,v2〉 ∀v2. (10)

Proof. The right inequality in (10) follows directly from the energy mini-
mization property of Schur complements. In order to prove the left inequal-
ity we assume that (10) is wrong. Then there exists a vector v2 6= 0 such
that vT2 Sv2 ≥ c̄vT2 Qv2 > cmaxv

T
2 Qv2, the left inequality of which can also

be written in the form minv1

(
v1

v2

)T
A

(
v1

v2

)
≥ c̄vT2 Qv2, or, equivalently

as minv1

(
v1

v2

)T (∑ne

j=1Aj

)(v1

v2

)
≥ c̄ minṽ1

(
ṽ1

v2

)T (∑ne

j=1 Ãj

)( ṽ1

v2

)
.

From the latter inequality it follows that

(
v1

v2

)T  ne∑
j=1

Aj

(v1

v2

)
≥ c̄

ne∑
j=1

min
ṽ1

(
ṽ1

v2

)T
Ãj

(
ṽ1

v2

)
∀v1,

which is equivalent to

ne∑
j=1

(
v1

v2

)T
Aj

(
v1

v2

)
≥ c̄

ne∑
j=1

vT2 Qjv2 ∀v1. (11)
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Then, since all matrices Aj and Qj are SPSD, it follows from (11) that there
exists at least one index j0 ∈ {1, 2, . . . , ne} such that(

v1

v2

)T
Aj0

(
v1

v2

)
≥ c̄vT2 Qj0v2 ∀v1.

Hence vT2 Sj0v2 = minv1

(
v1

v2

)T
Aj0

(
v1

v2

)
≥ c̄vT2 Qj0v2 which is in contra-

diction to (9) since c̄ > cmax.

A crucial step in the application of the two-level preconditioner is the real-
ization of the operator ΠD̃. We propose two different variants that correspond

to the following choices of D̃:

[I] D̃ = diag(Ã);

[II] D̃ = blockdiag(Ã). The diagonal blocks are determined by the groups of

fine DOF related to different macro structures whereas D̃ = diag(Ã) in
rows corresponding to coarse DOF.

In variant [I] the matrix RD̃RT is diagonal, which makes the application
of ΠD̃ notably simple and cost-efficient. In case of variant [II] the action

of (RD̃RT )−1 can be implemented via an inner iterative method such as a
preconditioned conjugate gradient (PCG) method, which then for reasons of
efficiency requires a uniform preconditioner. A possible candidate is the one-
level additive Schwarz (AS) preconditioner which however has to be adapted
in order to be robust with respect to coefficient jumps. For this reason we
study the scaled one-level AS preconditioner BAS defined via

B−1AS = SRS̃−1(S̃D̃S̃)−1S̃−1RTS (12)

which can be applied to the scaled system with the matrix

Ds = SDS = SRD̃RTS,

where S = [diag(A)]−1/2, if the result is then rescaled. Let us further denote

D̃s = S̃D̃S̃ and Rs = SRS̃−1 where S̃ = [diag(Ã)]−1/2.

Then the following lemma holds:

Lemma 2. The condition number of the preconditioned system using the
scaled one-level AS preconditioner satisfies the estimate

κ(B−1ASDs) ≤ κ(D̃s). (13)

Proof. First we show that λmin(B−1ASDs) ≥ 1. Note that Ds = RsD̃sR
T
s and

RsR
T
s = SRS̃−1S̃−1RTS = [diag(A)]−1/2R [diag(Ã)]RT [diag(A)]−1/2 = I.
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Consider next the matrix[
RsD̃sR

T
s I

I RsD̃
−1
s RTs

]
=

[
Rs 0
0 Rs

] [
D̃s I

I D̃−1s

] [
RTs 0
0 RTs

]

which is SPSD with an SPD pivot block Ds = RsD̃sR
T
s . Consequently, its

Schur complement is an SPSD matrix, i.e.

RsD̃
−1
s RTs − (RsD̃sR

T
s )−1 ≥ 0

which proves that λmin(B−1ASDs) ≥ 1.
On the other hand we have

λmax(B−1ASDs) = λmax(RsD̃
−1
s RsDs)

= λmax(D
1/2
s RsD̃

−1
s RsD

1/2
s )

= λmax(D̃
−1/2
s RTs DsRsD̃

−1/2
s )

≤ λmax(D̃−1s )λmax(RTs RsD̃sR
T
s Rs)

≤ λmax(D̃−1s )λmax(D̃s)λmax(RTs Rs) = κ(D̃s)

which completes the proof.

Remark 1. For conforming FEM discretization of the second order scalar el-
liptic PDE it is not difficult to show that κ(D̃s) is uniformly bounded with

respect to jumps of an elementwise constant coefficient. Furthermore, D̃s is
block-diagonal with small-sized blocks and thus κ(D̃s) is easily computable.

4 Auxiliary space multigrid method

Consider the exact block factorization of the sequence of auxiliary stiffness
matrices Ãk, where the superscript k = 0, 1, . . . , `−1 indicates the coarsening
level:

Ã(k)−1 = L̃(k) T D̃(k)L̃(k), A(k+1) := Q(k),

L̃(k) =

[
I

−Ã(k)
21 Ã

(k)
11

−1
I

]
, D̃(k) =

[
Ã

(k)
11

−1

Q(k)−1

]
.

Let the algebraic multilevel iteration (AMLI)-cycle auxiliary space multigrid
(ASMG) preconditioner B(k) be defined by (see Kraus et al. [2014]):

B(k)−1 := M
(k)−1

+(I −M (k)−TA(k))Π(k) L̃(k)
T
D

(k)
L̃(k)Π(k)T (I −A(k)M (k)−1),

D
(k)

:=

[
Ã

(k)
11

−1

B
(k+1)
ν

]
, B

(`)
ν := A(`)−1.
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In the nonlinear AMLI-cycle B
(k+1)
ν = B

(k+1)
ν [·] is a nonlinear mapping

realized by ν iterations of a Krylov subspace method (e.g. the generalized
conjugate gradient (GCG) method), thus employing the coarse level pre-
conditioner B(k+1). In Kraus [2002] the convergence of the multiplicative
nonlinear AMLI has been first analyzed, while Notay and Vassilevski [2008],
Vassilevski [2008], Hu et al. [2013] have provided the multigrid framework
along with a comparative analysis.

We want to stress the fact that the presented construction provides a
framework for both linear and nonlinear AMLI cycle multigrid as well as
classical multigrid methods.

5 Numerical Results

Subject to numerical testing is the scalar elliptic boundary-value problem

−∇ · (k(x)∇u(x)) = f(x) in Ω, (14a)

u = 0 on Γ. (14b)

Here Ω is a polygonal domain in IR2, f is a given function in L2(Ω) and

k(x) = α(x)I = αeI. (15)

Upon the entire boundary of the domain Dirichlet boundary conditions have
been imposed as other boundary conditions would not qualitatively affect the
numerical results.

Piecewise bilinear functions have been used in the process of discretization
of (14) leading to the linear system of algebraic equations (1). A uniform mesh
consisting of N×N elements (squares) is considered where N = 2`+2, ` =
1, . . . , 7, and the covering is assumed to consist of subdomains composed of 8×
8 elements that overlap with half of their width or height. The mesh hierarchy
is such that the coarsest mesh corresponds to ` = 1 and is composed of
21+2×21+2 = 64 elements whereas the finest mesh is obtained by performing
`− 1 = 1, . . . , 6 steps of uniform mesh refinement.

The vector of all zeros was chosen to be the right hand side f in (1) while
the outer iteration was initialized with a random vector. Three representative
coefficient configurations are considered (on the respective finest mesh):

[0] log-uniformly distributed coefficient αe = 10prand where αe is constant on
each element e and prand ∈ (0, q];

[1] inclusions with coefficient αι = 10prand against a background as in [0]
where αι is constant on every inclusion ι and prand ∈ (0, q], see Fig. 2(a);

[2] stiff inclusions with coefficient αι = 10q against a background as in [0], see
Fig. 2(b).

In Table 1 we compare the condition numbers
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κ(D̃s) = κ(SD̃S), κ(B−1ASDs) = κ(SRS̃−2D̃−1S̃−2RTS(SRD̃RTS)),

with that of the corresponding unscaled preconditioned system

κ(RD̃−1RT (RD̃RT ))

for the coefficient distribution [0] on three different meshes with mesh size
h ∈ {1/16, 1/32, 1/64} and varying contrast q. The obtained numerical results
are in accordance with Lemma 2; They further show that the scaled one-level
additive Schwarz method yields a uniform preconditioner whereas its unscaled
analog suffers from high-contrast coefficients.

Next, the numerical performance of the nonlinear (AMLI)-cycle ASMG
method (V-cycle and W-cycle) utilizing the preconditioner BAS is tested for:

(P1) Problem (14) with coefficient distributions [1] and variants [I] and [II] of
ΠD̃. Variant [II] is realized by 10 inner PCG iterations with the scaled
one-level AS preconditioner.

(P2) Same as Problem (P1) but for coefficient distribution 2.

A comparison between variant [I] and variant [II] of the `-level V-cycle and
W-cycle is presented in Tables 2–3. Pre- and post-smoothing is performed by

(a) 16 × 16 mesh (b) 64 × 64 mesh (c) 512 × 512 mesh

Fig. 1 Inclusions resolved on different fine scales (meshes)

(a) Coefficient for Prob-

lem (P1) on 512×512 mesh

(b) Coefficient for Prob-

lem (P2) on 512×512 mesh

Fig. 2 Random and stiff inclusions against random background αe = 10prand
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Table 1 Condition numbers of AS-preconditioned systems versus κ(D̃s)

unscaled AS method scaled AS method κ(D̃s)

@
@q

h
1/16 1/32 1/64 1/16 1/32 1/64 1/16 1/32 1/64

1 9.76 × 101 9.47 × 101 9.35 × 101 1.25 1.26 1.26 4.73 4.73 4.73
2 2.25 × 102 3.69 × 102 5.89 × 102 1.28 1.27 1.29 4.73 4.73 4.73

3 6.93 × 102 2.42 × 103 3.70 × 103 1.29 1.32 1.33 4.73 4.73 4.73

4 1.93 × 104 1.97 × 104 3.77 × 104 1.33 1.33 1.33 4.73 4.73 4.73
5 1.78 × 105 1.87 × 105 2.16 × 105 1.32 1.33 1.33 4.73 4.73 4.73

6 3.07 × 105 1.34 × 106 2.15 × 106 1.33 1.33 1.33 4.73 4.73 4.73

one symmetric point Gauss-Seidel iteration on each level except the coarsest
one where all linear systems are solved directly.

Table 2 Number of iterations for residual reduction by 106

Problem (P1)

Nonlinear AMLI V-cycle Nonlinear AMLI W-cycle

[I] [II] [I] [II]

@
@q

`
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

1 4 5 6 6 7 8 5 5 6 6 7 8 4 5 5 5 5 5 5 5 5 5 5 5

2 5 5 6 6 7 8 5 5 6 6 7 8 5 5 5 5 5 5 5 5 5 5 5 5

3 5 6 6 7 7 8 5 6 6 7 7 8 5 6 6 6 6 6 5 5 5 5 5 5
4 5 6 7 8 8 9 5 6 7 8 8 8 5 6 6 6 6 6 5 6 6 6 6 6

5 5 7 7 8 9 9 5 6 7 8 8 8 5 6 6 6 7 7 5 6 6 6 6 6

6 5 7 8 9 13 15 5 7 8 8 8 9 5 6 6 7 9 10 5 6 6 6 6 6

Table 3 Number of iterations for residual reduction by 106

Problem (P2)

Nonlinear AMLI V-cycle Nonlinear AMLI W-cycle

[I] [II] [I] [II]

@
@q

`
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

1 5 5 6 6 7 8 5 5 6 6 7 8 5 5 5 5 5 5 5 5 5 5 5 5
2 5 5 6 6 7 8 5 5 6 6 7 8 5 5 5 5 5 5 5 5 5 5 5 5

3 5 5 6 6 7 8 5 5 6 6 7 8 5 5 5 6 5 6 5 5 5 5 5 5

4 5 6 6 7 7 8 5 5 6 7 8 8 5 5 6 6 6 6 5 6 5 5 5 6
5 5 6 7 7 9 9 5 6 7 7 8 8 5 6 6 6 6 6 5 6 6 6 6 6

6 5 6 8 8 12 13 5 6 7 8 9 9 5 6 6 6 8 9 5 6 6 6 6 6
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The obtained results demonstrate that the choice of D̃ and consequently
of the surjective mapping ΠD̃ affect the performance of the nonlinear AMLI-
cycle ASMG method crucially. As for variant [I] the number of ASMG itera-
tions required to achieve the prescribed accuracy increases with the contrast,
variant [II] shows full robustness.
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