
Hierarchical preconditioners for
high-order FEM

Sabine Le Borne1

The finite element discretization of partial differential equations (PDEs) re-
quires the selection of suitable finite element spaces. While high-order finite
elements often lead to solutions of higher accuracy, their associated discrete
linear systems of equations are often more difficult to solve (and to set up)
compared to those of lower order elements.

We will present and compare preconditioners for these types of linear sys-
tems of equations. More specifically, we will use hierarchical (H-) matrices to
build block H-LU preconditioners. H-matrices provide a powerful technique
to compute and store approximations to dense matrices in a data-sparse for-
mat. We distinguish between blackbox H-LU preconditioners which factor
the entire stiffness matrix and hybrid methods in which only certain sub-
blocks of the matrix are factored after some problem-specific information has
been exploited. We conclude with numerical results.

1 Introduction

This contribution is concerned with preconditioning the linear systems of
equations arising in high-order finite element discretizations of PDEs (Šoĺın
et al. [2004], Deville et al. [2002]). More specifically, we will introduce and
analyse hybrid blackbox hierarchical matrix techniques in which

• only the stiffness matrix is given (which excludes lower order precondi-
tioning);

• the preconditioner might use some knowledge on expected matrix proper-
ties (e.g. sparsity structure) from the underlying problem.

Hamburg University of Technology, Schwarzenbergstr. 95E, 21073 Hamburg

leborne@tuhh.de

1



2 Sabine Le Borne

The construction of efficient solution methods for these types of systems has
been a very active recent research field. Many solution approaches are based
on multigrid (Heys et al. [2005]) and/or domain decomposition approaches
(Lottes and Fischer [2005]), or try to construct sparse preconditioners for the
dense matrices (Austin et al. [2012]). Here, we pursue a different approach in
which we propose to use hierarchical matrix techniques to construct efficient
preconditioners for these systems.

This paper is organized as follows: In section 2, we will introduce a model
problem and a particular type of high-order finite element discretization.
While in this paper we develop preconditioners for this particular setting,
the intention is in future work to extend these preconditioners to a wider
range of PDEs and discretization schemes. In section 3, we introduce two
preconditioning approaches. The first one is blackbox, i.e., it only requires
the (sparse) matrix as input and does not make any assumptions on the origin
of the matrix. The second approach also requires just the matrix as input, but
in addition it “knows” that it originates from some high-order finite element
discretization and incorporates this knowledge into the construction of the
preconditioner. In section 4, we conclude with numerical results illustrating
the performance of the proposed preconditioning approaches.

2 High-order Qp finite elements

The three-dimensional convection-diffusion equation

−ε∆u+ b · ∇u = f in Ω = (0, 1)3, (1)

u = x2 + y2 + z2 on ∂Ω (2)

serves as our test problem. In particular, we consider a small viscosity ε =
10−3 and a circular convection direction b(x,y, z) = (0.5− y, x− 0.5, 0.0)T ,
resulting in a convection-dominant problem.

We discretize this test problem using a finite element discretization with
quadrilateral Qp finite elements. To this end, we use a “triangulation” of a
(regularly refined) quadrilateral grid (cubes), and then define the finite ele-
ment space V = Qp of continuous, piecewise polynomial elements of (at most)
order p in each coordinate direction. As a basis for this finite element space,
we use Lagrange (tensor) basis functions {φ1, · · · , φn} satisfying φi(xj) = δij .
The finite element discretization results in a linear system of equations Ax = b
whose solution yields the finite element approximation uh =

∑
xiφi ∈ V .

The following Figure 1 illustrates the sparsity structures of matrices ob-
tained for linear (h = 1

16 ), quadratic (h = 1
8 ), fourth (h = 1

4 ) and eighth
(h = 1

2 ) order basis functions, all having size 3375× 3375.
The advantage of high-order elements lies in their p’th order discretization

error ‖u − uh‖H1 ∼ hp (where ‖ · ‖H1 denotes the usual Sobolev H1-norm),



Hierarchical preconditioners for high-order FEM 3

Fig. 1 Sparsity structures using linear, quadratic, fourth and eighth order polynomials,

resulting in (on average) 24, 56, 186 and 850 nonzero entries per row, resp.

while their disadvantages include the linear systems to be solved to be less
sparse and in general worse conditioned compared to those obtained using
lower order elements.

In the following section, we introduce several block preconditioners and
analyse their performance as we increase the order of discretization.

3 Block-H-LU factorizations

The following block preconditioners are constructed through a combination of
a row and column permutation of the (entire) matrix followed by an approxi-
mate LU factorization, either of the entire matrix or only of the blocks on the
diagonal to be used in combination with a block Gauß-Seidel preconditioner.

3.1 Nested dissection based block structures

While high-order finite elements lead to less sparse matrices, they are usually
still “sparse enough” for the well-known nested dissection ordering: Based
on the matrix graph, the degrees of freedom are divided into three subsets
D1, D2 and S. The two subsets D1, D2 are disconnected in the sense that
i ∈ D1 and j ∈ D2 implies aij = 0 for the respective matrix entry. The
subset S, the so-called “separator” which is preferably small (in the case of our
three-dimensional model problem it is of order O(n2/3)) consists of degrees of
freedom with connections to both subsets D1 and D2. We recursively apply
this ordering strategy to the two subsets D1, D2. Figure 2 shows the sparsity
structures for the matrices of Figure 1 after a nested dissection reordering.

The advantage of such a reordering prior to an (approximate) LU factor-
ization lies in the fact that an (exact) LU factorization preserves the two
off-diagonal zero blocks in the 1 × 2 and 2 × 1 block positions of the 3 × 3
block matrix. Therefore, the LU factorizations of the first two (approximately
equal sized) diagonal blocks can be computed in parallel followed by the fac-
torization of the last, smaller block corresponding to the separator. We make



4 Sabine Le Borne

Fig. 2 Sparsity structures using linear, quadratic, fourth and eighth order polynomials

after a nested dissection ordering

the following two observations with respect to the polynomial order p of the
underlying finite element space:

• The relative size of the separator is independent of the polynomial order p
of the finite element space (when using a Lagrange basis). This is important
since it is typically the factorization of this separator block that dominates
the work complexity of the factorization of the entire matrix.

• For larger p, the nested dissection “finds” the dense subblocks that cor-
respond to so-called “bubble” functions - these are basis functions with
support in a single element that can be eliminated without additional fill-
in into the stiffness matrix.

The next step is the computation of an approximate LU-factorization in
the hierarchical (H-) matrix format. Hierarchical matrices have been intro-
duced more than a decade ago (Hackbusch [1999]). They are based on a
blockwise low rank approximation of off-diagonal matrix blocks. The efficient
storage (of the rectangular matrix factors) of these low rank blocks reduces
the storage complexity as well as the computational complexity for most ma-
trix operations to almost optimal order (up to powers of logarithmic factors).
For general details, we refer to the comprehensive lecture notes (Börm et al.
[2003]), and for nested dissection based H-LU factorization that is used in
the numerical results in section 4 to (Grasedyck et al. [2009]). Without going
into the details of H-matrices, here we only exploit the fact that the accuracy
of H-LU factorizations can be controlled adaptively through a parameter δH.
As δH → 0, the H-LU factors converge toward the exact LU factors, although
at the expense of increasing storage and computational costs.

3.2 Degree of freedom type based block structures

We now propose to begin with an ordering of the degrees of freedom according
to their association with vertices (V), edges (E), faces (F) or (the interior of)
cells (C). Since we use a structured grid, this ordering can be obtained directly
from the sparsity pattern without access to the grid geometry (through the
number of nonzero entries per matrix row). Figure 3 shows the resulting
reordered sparsity structures for the matrices of Figure 1. The matrices still



Hierarchical preconditioners for high-order FEM 5

include the (Dirichlet) boundary vertices (resulting in the last block on the
diagonal of equal size for all four matrices, here about one third of the total
number of matrix rows due to the small problem size) which will be eliminated
before the iterative solution for the true degrees of freedom.

Fig. 3 Sparsity structures for linear, quadratic, fourth and eighth order polynomials after

a reordering based on the types of degree of freedom (vertex, edge, face, cell or boundary)

Besides this last block of boundary vertices, the matrices for quadratic,
fourth and eighth degree polynomials have an additional common structure
of four blocks on the diagonal according to their vertex, edge, face and (in-
terior) cell degrees of freedom. The block corresponding to the (interior) cell
degrees of freedom is the easiest one to recognize since it is of block diag-
onal structure, and its relative size, as well as the size of the dense blocks
on the diagonal, increases with the increase in polynomial order. In theory,
this block can also be eliminated without creating any additional fill-in in
the remaining matrix. This process is called “static condensation” which is
known to be sometimes ill-conditioned. For smaller polynomial order p, this
can also be done in practice, but for high order p, the computational costs
of such an elimination increase substantially and may dominate the overall
computational costs for the solution of the linear system.

The resulting block structure can be used for Jacobi or Gauß-Seidel block
preconditioners. These preconditioners require (approximate) solvers for the
matrix blocks on the diagonal for which we will again useH-LU factorizations.
In particular, we will computeH-LU factorizations for the two diagonal blocks
in the matrices (3) and (4).

No static condensation:
AV V

AEE AEF AEC

AFE AFF AFC

ACE ACF ACC

 ,


AV V AV E

AEV AEE

AFF AFC

ACF ACC

 , (3)

After static condensation of interior cell (C) degrees of freedom:AV V

AEE AEF

AFE AFF

 ,

AV V AV E

AEV AEE

AFF

 . (4)



6 Sabine Le Borne

The bars above the blocks after static condensation indicate that the matrix
entries will have changed after static condensation while the sparsity pattern
is the same as before. The H-LU factorizations of the blocks on the diagonal
will once more be preceded by a nested dissection ordering (within these
subblocks) as described in the previous subsection.

4 Numerical results and conclusions

In this section, we will provide a small selection of numerical results for the
various preconditioners that have been introduced in subsections 3.1 and 3.2.
All tests were performed on a DELL Latitude E6530 laptop (2.60GHz, 16GB).
The discrete linear systems have been produced by the software package
deal.II (Bangerth et al. [2013, 2007]), and we use the H-arithmetic of the
HLib package (Börm and Grasedyck).

As an iterative solver, we use a preconditioned BiCGStab method, and we
stop the iteration once the residual is reduced by a factor of 10−6, i.e., when
‖rk‖2 ≤ 10−6‖r0‖2 = 10−6‖b‖2 since we use the starting vector x0 = 0. In Ta-

Table 1 H-LU: Time (seconds) and storage (MB), linear elements

dofs 3,375 29 · 103 250 · 103 2 · 106 3,375 29 · 103 250 · 103 2 · 106
level 4 5 6 7 4 5 6 7

H-accuracy δH = 0.1 H-accuracy δH = 0.01

Storage (MB) 7.1 100 969 8611 10 151 1556 13749

Set-up time (s) 0.3 6.6 91 796 0.7 17 271 2494

BiCGStab steps 5 7 10 23 2 3 4 4

time (s) 0.0 0.2 3.2 67.5 0.0 0.1 1.7 (30.0)

ble 1, we show numerical results for linear finite elements: As we increase the
level of grid refinement, the number of degrees of freedom (dofs) increases by
a factor of approximately 8. A comparable factor of increase can be observed
in the storage and set-up times of the H-LU factorizations which have been
performed for a relative accuracy of δH ∈ {0.1, 0.01}. The convergence rates of
the preconditioned BiCGStab method deteriorate only modestly as the prob-
lem size increases, i.e, we obtain a robust solution method (the BiCGStab
time for the problem size on level 7 for the higher H-accuracy δH = 0.01 is
slowed down by swapping and hence put into parentheses).

Table 2 shows respective results for finite element spaces using polynomial
degrees p = 4, 6 and 9. We had to use higher accuracies for the H-LU fac-
torizations (now δH ∈ {10−1, 10−2} for p = 4, 6 and even δH ∈ {10−4, 10−5}
for p = 9) in order to obtain convergence in the BiCGStab iteration, which
is no surprise in view of the worse conditioning of the matrices for high-



Hierarchical preconditioners for high-order FEM 7

Table 2 H-LU: Time (sec) and storage (MB), polynomial degrees 4, 6, and 9

level 3 4 2 3 1 2

H-acc degree 4 degree 6 H-acc degree 9

Storage (MB)

10−1 117 1201 32 376 10−4 33 485

10−2 181 1977 61 733 10−5 36 543

stiffness matrix 82 654 82 654 90 716

H-acc Set-up time (s)

10−1 10.3 130 1.6 30.8 10−4 3.5 110

10−2 31 438 5.7 123 10−5 3.7 142

H-acc BiCGStab (steps/time)

10−1 22/1.0 20/9.3 div div 10−4 4/0.1 8/1.7

10−2 3/0.2 4/2.7 8/0.2 10/2.9 10−5 2/0.04 3/0.7

order elements. Once more, for an “accurate enough” H-LU factorization as
a preconditioner, we obtain an almost optimal iterative method.

Table 3 shows a comparison of the preconditioners introduced in subsection
3.1 versus those of subsection 3.2, here shown for elements of polynomial
degree 4 on a level-4 grid, resulting in a total of about 250,000 dofs. As we
“drop” certain off-diagonal blocks from the matrix before its factorization, the
required storage and set-up times are reduced. The preconditioned BiCGStab
iteration now requires additional steps and hence more time, but the savings
in set-up time appear to be more significant than the disadvantage in iteration
time (as long as we still have a convergent method).

Table 3 H-LU: Time (sec) and storage (MB), polynomial degree 4, ≈ 250,000 dofs

prec


vv ve vf vc
ev ee ef ec
fv fe ff fc
cv ce cf cc




vv
ee ef ec
fe ff fc
ce cf cc




vv ve
ev ee

ff fc
cf cc




vv
ee

ff fc
cf cc


H-acc Storage (MB)

10−1 1201 1184 1008 1001

10−2 1977 1902 1516 1486

H-acc Set-up time (s)

10−1 129 123 72 70

10−2 438 393 215 207

H-acc BiCGStab (steps/time)

10−1 20/9.3 26/12.0 56/22.9 59/24.1

10−2 4/2.7 8/5.2 47/25.6 49/26.2

Finally, in Table 4 we show results where the matrix size has been reduced
by eliminating the “bubble” dofs through static condensation before the sys-
tem is solved iteratively. For 4th order polynomials on a level-4 grid (about
250,000 dofs before static condensation), the “naive” static condensation took
120 seconds, which is significantly more than the savings obtained through
now solving a smaller system so that it is not recommended unless a more
efficient implementation of static condensation can be found.



8 Sabine Le Borne

Table 4 BiCGStab: steps/time for Method “static condensation” (top) and Method “no

static condensation” (bottom), “br” denotes a BiCGStab breakdown

prec

vv ve vf
ev ee ef
fv fe ff

 vv
ee ef
fe ff

 vv ve
ev ee

ff

 vv
ee

ff


10−1 17/4.8 19/5.2 49/br 53/12.6

10−2 4/1.9 8/3.5 42/15.6 44/15.7

prec


vv ve vf vc
ev ee ef ec
fv fe ff fc
cv ce cf cc




vv
ee ef ec
fe ff fc
ce cf cc




vv ve
ev ee

ff fc
cf cc




vv
ee

ff fc
cf cc


10−1 20/9.3 26/12.0 56/22.9 59/24.1

10−2 4/2.7 8/5.2 47/25.6 49/26.2

References

T. M. Austin, M. Brezina, B. Jamroz, C. Jhurani, T. A. Manteuffel, and
J. Ruge. Semi-automatic sparse preconditioners for high-order finite ele-
ment methods on non-uniform meshes. J. Comput. Physics, pages 4694–
4708, 2012.

W. Bangerth, R. Hartmann, and G. Kanschat. deal.II – a general purpose
object oriented finite element library. ACM Trans. Math. Softw., 33(4):
24/1–24/27, 2007.

W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier,
B. Turcksin, and T. D. Young. The deal.ii library, version 8.1. arXiv
preprint http: // arxiv. org/ abs/ 1312. 2266v4 , 2013.

S. Börm and L. Grasedyck. HLIB version 1.3. Available at www.hlib.org.
S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical matrices, 2003. Lec-

ture Notes No. 21, Max-Planck-Institute for Mathematics in the Sciences,
Leipzig, Germany.

M. O. Deville, P. F. Fischer, and E. H. Mund. High-order methods for in-
compressible fluid flow, volume 9 of Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University Press, 2002.

L. Grasedyck, R. Kriemann, and S. Le Borne. Domain decomposition based
H-LU preconditioning. Numerische Mathematik, 112:565–600, 2009.

W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I:
Introduction to H-matrices. Computing, 62:89–108, 1999.

J. J. Heys, T. A. Manteuffel, S. F. McCormick, and L. N. Olson. Algebraic
multigrid for higher-order finite elements. J. Comput. Phys., 204(2):520–
532, 2005.

J. Lottes and P. Fischer. Hybrid multigrid/Schwarz algorithms for the spec-
tral element method. J. Sci. Comp., 24:45–78, 2005.

P. Šoĺın, K. Segeth, and I. Doležel. Higher-order finite element methods.
Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton,
London, 2004.


