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Abstract We consider Bayesian inversion of parametric operator equations for the
case of a large number of measurements. Increased computational efficiency over
standard averaging approaches, per measurement, is obtained by binning the data
and applying a multilevel Monte Carlo method, specifying optimal forward solu-
tion tolerances per level. Based on recent bounds of convergence rates of adaptive
Smolyak quadratures in Bayesian inversion [7] for single observation data, the bin
sizes in large sets of measured data are optimized and a rate of convergence of the
error vs. work is derived analytically and confirmed by numerical experiments.

1 Introduction

In recent years, various methods have been developed for solving parametric opera-
tor equations, mainly focusing on the estimation of parameters given measurements
of the parametric solution, subject to a stochastic observation error model. A sec-
ond objective is prediction of a “most likely” response of the parametric system
given noisy measurements. The Bayesian approach to such inverse problems for
partial differential equations (PDEs for short) has been the focus of numerous pa-
pers [10, 9, 7, 8] and will be considered here. For multiple data points, averaging is
often done with a standard Monte Carlo approach. We consider here the case where
computational resources are limited and develop a multilevel Monte Carlo method
(MLMC) achieving an error of the same order while requiring less work [6, 5, 2, 1].
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2 Bayesian Inversion of Parametric Operator Equations

We assume an operator equation depending on a distributed, uncertain “parameter” u
with values in a separable Banach space X . It takes the form of the operator equation

Given u ∈ X̃ ⊆ X , find q ∈X : A(u;q) = F(u) in Y ′ , (1)

where we denote by X and Y two reflexive Banach spaces over R with (topolog-
ical) duals X ′ and Y ′, respectively and A(u; ·) ∈ L (X ,Y ′). Assuming that the
forcing function F : X̃ 7→Y ′ is known, and the uncertain operator A(u; ·) : X 7→Y ′

is locally boundedly invertible for uncertain input u in a sufficiently small neighbor-
hood X̃ , let the uncertainty-to-observation map G : X̃ 7→ RK have the structure

X ⊇ X̃ 3 u 7→ G (u) := O(G(u;F)) ∈ RK . (2)

Here, X̃ 3 u 7→ q(u) =G(u;F)∈X denotes the (noise-free) response of the forward
problem for a given instance of u ∈ X̃ and O a bounded linear observation operator
O ∈L (X ,RK), K < ∞. The goal of computation is assumed to be the low-order
statistics of a quantity of interest (QoI) given noisy observational data δ of the form

δ = G (u)+η , (3)

where δ represents the observation of G (u) perturbed by the noise η , a random
variable with given statistical properties. We restrict ourselves to the case where
the measurement error is Gaussian and the covariance matrix symmetric positive
definite, i.e. η ∼N (0,Γ ) with Γ ∈ RK×K

spd .
We work in the following under the assumption that the uncertainty u admits a

parametric representation of the form

u = u(y) := 〈u〉+ ∑
j∈J

y jψ j ∈ X

for some “nominal” value 〈u〉 ∈ X of the uncertain datum u, a countable sequence
(ψ j) j∈J of X with J := {1, . . . ,J},J < ∞ or J = N and for some coefficient se-
quence y = (y j) j∈J (after possibly rescaling the fluctuations) in the reference do-
main U = [−1,1]J =

⊗
j∈J[−1,1] with unconditional convergence. We assume y

to be a random variable on the countable product probability space (U,B(U),µ0)
with U as above and with µ0(dy) = ∏ j∈J

1
2 λ 1(dy j). This also makes δ a random

variable; for a fixed value of y, (3) gives an expression for δ (y), denoted by δ |y.
In general, our aim is to compute the “most likely” value of a QoI over all re-

alizations of u, with the QoI defined as a function φ : U → S mapping from the
parameter space U to some Banach space S . Bayes’ theorem characterizes this
value as the mathematical expectation with respect to a probability measure µ0 (the
“Bayesian prior”) on U which we choose as a countable product of uniform mea-
sures. In particular, we are interested in φ = G, the response of the system. To this
end, we use Bayes’ Theorem to obtain an expression for y|δ , as in [9, 10].
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Theorem 1 (Bayes’ Theorem). Let G
∣∣∣
u=〈u〉+∑ j∈J y jψ j

: U → RK be bounded and

continuous. Then, µδ (dy), the distribution of y|δ , is absolutely continuous with
respect to µ0(dy), and

dµδ (y)
dµ0(y)

=
1

Zδ

exp
(
−1

2
||δ −G (y)||2Γ

)
with Zδ :=

∫
U exp(−Φ(y;δ )) µ0(dy)> 0 .

In the Bayesian setting, the distribution dµ0(y) is called the prior distribution and
is assumed to be known and easily computable. Thus, we can write our desired
expectation as an integral over the prior measure µ0:

Eµδ

[φ ] =
∫

U
φ(y)µ

δ (dy)=
1

Zδ

∫
U

φ(y)exp
(
−1

2
||δ −G (y)||2Γ

)
µ0(dy)=:

Z′
δ

Zδ

. (4)

This formulation of the expectation Eµδ

[·] is based on just one measurement δ . For
a given model for the measurement errors η , we would like to additionally compute
the expectation over all errors. Assuming that the perturbations η are normally dis-
tributed as above, this can be written as an expectation with respect to the measure
γK

Γ
(η), the K-variate Gaussian measure with covariance Γ . Here, and throughout,

we assume the observation noise η to be statistically independent from the uncer-
tain parameter u in (1). This yields the total expectation of the QoI φ in terms of
Z′

δ
and Zδ as

EγK
Γ

[
Eµδ

[φ ]
]
=
∫
RK

Z′
δ

Zδ

∣∣∣∣
δ=G (y0)+η

γ
K
Γ (dη) , (5)

where G (y0) denotes the observation at the unknown, exact parameter y0.
In practice, we are given a set of measurements ∆ := {δi, i = 1, . . . ,M} with

which this outer expectation should be approximated. The measurements can be
taken at different positions, i.e. with respect to different observation maps Oi in (2).
In the derivations below, we consider the notationally more convenient case where
the measurements are all obtained using the same observation map. We do, however,
impose the restriction that the measurements are homoscedastic, i.e. δi is Gaussian
with the same covariance Γ for all i = 1, . . . ,M. In Section 4, we will approximate
the outer expectation in (5) by a multilevel Monte Carlo averaging approach.

3 Approximation of Posterior Expectation

A first simplification of (5) is achieved by replacing the inner expectation over

the posterior distribution µδ by an approximation Eµδ

τL [φ ] with tolerance parame-
ter τL > 0. We assume that the following bound holds for the considered QoI φ :∥∥∥Eµδ

[φ ]−Eµδ

τL [φ ]
∥∥∥

X
≤ τL . (6)
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Our method of choice is the adaptive Smolyak algorithm developed in [7], which
adaptively constructs a sparse tensor quadrature rule that approximates Zδ and Z′

δ
.

More precisely, the results in [7, 8] ensure existence of a monotone index set Λ with∥∥∥Eµδ

[φ ]−Eµδ

τL [φ ]
∥∥∥

X
≤CSM

Γ N
−( 1

p−1)
L , (7)

where NL is the cardinality of the index set Λ assuming that the forward solution
map U 3 y 7→ q(y) is (b, p,ε)-analytic for some 0 < p < 1 and ε > 0, i.e.
instance well-posedness of the forward problem:

for each instance y ∈ U , there exists a unique realization u(y) ∈ X̃ ⊆ X of the
uncertainty and a unique solution q(y)∈X of the forward problem (1) satisfying
‖q(y)‖X ≤C0 for all y ∈U .

analyticity:
There exists a 0 ≤ p ≤ 1 and a positive sequence b = (b j) j∈J ∈ `p(J) such that
for every sequence ρ = (ρ j) j∈J of poly-radii ρ j > 1 with ∑ j∈J(ρ j−1)b j ≤ 1−ε ,
the solution map U 3 y 7→ q(y) ∈X admits an analytic continuation to the open
poly-ellipse Eρ :=

⊗
j∈JEρ j ⊂ CJ and satisfies ‖q(z)‖X ≤Cε(ρ), ∀z ∈ Eρ .

The concept of (b, p,ε)-analyticity allows to analyze the regions of analyticity Eρ of
the solution in each parameter and exploit the anisotropic smoothness of the prob-
lem reflected by the poly-radii ρ . Sufficient conditions on the (b, p,ε)-analyticity
of the forward problem (1) are given in [4, 8]. The results presented in [7, 8] sug-
gest dimension robust convergence rates of the form (7) for adaptive Smolyak-based
quadrature algorithms using a greedy-type approach to construct the monotone in-
dex set. The underlying quadrature points are symmetrized Léja sequences (see [3]
and the references therein for more details), which allow us to relate the number of
quadrature points to the prescribed tolerance τL as follows.
Proposition 1. The work required for the evaluation of the adaptive Smolyak ap-
proximation up to the tolerance τ > 0 based on symmetrized Léja quadrature is
bounded by C(Γ )τ− log2 3·( 1

p−1)−1
with C(Γ )> 0 independent of τ .

Proof. For a multiindex ν in a monotone index set ΛN with #ΛN ≤ N, the bound
#{i ∈ J : ν 6= 0} ≤ blog2 Nc holds as argued in the proof of Lemma 5.4 in [7].
A worst case bound can be derived by considering an isotropic refinement in the
first blog2 Nc dimensions, i.e. it holds for the maximal number of quadrature points
M ≤ 3log2 N = Nlog2 3. Equating (7) to τ , solving for N and inserting into the above
yields the claimed bound on the number of quadrature points.

Remark 1. Note that the result derived in Proposition 1 is based on a worst case
bound on the number of quadrature points arising in the case of isotropic refinement.

4 Binned Multilevel Monte Carlo

In this section, we formulate our method for combining M realizations of δ , ∆ =
{δi : i = 1, . . . ,M} to compute an approximation to
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EγK
Γ

[
Eµδ

[φ ]
]
=
∫
RK

1
Zδ

∫
U

φ(y)exp
(
−1

2
||δ −G (y)||2Γ

)∣∣∣∣
δ=G (y0)+η

µ0(dy)γ
K
Γ (dη) .

(8)
Our approach is based on the multilevel Monte Carlo method originally applied by
Heinrich [6] and Giles [5] and, in the current form, by Barth et al. [2].

Formulation of the Binned MLMC Algorithm. We interpret the approximation

Eµδ

τL [φ ] obtained by the method explained in Section 3 as corresponding to a dis-
cretization level L and write it as a telescopic sum over the levels `= 0, . . . ,L. Using

the convention Eµδ

τ−1 = 0, we obtain the exact reformulation

Eµδ

τL [φ ] =
L

∑
`=0

(
Eµδ

τ`
[φ ]−Eµδ

τ`−1 [φ ]
)
. (9)

Inserting this back into (8) and applying the linearity of the expectation yields

EγK
Γ

[
L

∑
`=0

(
Eµδ

τ`
[φ ]−Eµδ

τ`−1 [φ ]
)]

=
L

∑
`=0

EγK
Γ

[
Eµδ

τ`
[φ ]−Eµδ

τ`−1 [φ ]
]
.

Replacing the expectations on each level by a sample mean over a level-dependent
number of samples M` yields a full approximation to (8),

EγK
Γ

ML,L[E
µδ

τL [φ ]] :=
L

∑
`=0

EγK
Γ

M`

[
Eµδ

τ`
[φ ]−Eµδ

τ`−1 [φ ]
]
, (10)

where we denote by EM[Y ] the standard Monte Carlo estimator for realizations Ŷi of
a random variable Y : Ω → S, given by EM[Y ] = 1

M ∑
M
i=1 Ŷi.

A crucial aspect of this formulation is the choice of the number of samples per
level (M`)

L
`=0 and the tolerances per level (τ`)L

`=0. Since the total number of samples
is fixed, a natural approach is to make an ansatz for M` and then choose τ` optimally.

Number of Samples per Level. Thinking of the levels ` = 0, . . . ,L as “bins” con-
taining measurements over which we wish to average, we distribute the samples ac-
cording to the ansatz M` = bL−`+1 with b∈N,b> 1. The analysis presented can also
be generalized to the case b∈R,b > 1. The total number of samples is ∑

L
`=0 bL−`−1,

which we assume to be the given number of measurements M.

Error Bounds. For the computation of the error, we consider the Gaussian proba-
bility space (Ω ,B(Ω),γK

Γ
) and the random variable η . The approximation of the

inner expectation is an X -valued random variable whereas the full expectation is in

X . Clearly, Eµδ

τ`
[φ ] ∈ L2(Ω ;X ) and the error of (10) in the L2(Ω ;X ) norm can

be bounded by
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Γ

[
Eµδ

[φ ]
]
−EγK

Γ

ML,L[E
µδ

τL [φ ]]

∥∥∥∥
L2(Ω ;X )

≤
∥∥∥EγK

Γ

[
Eµδ

[φ ]
]
−EγK

Γ

[
Eµδ

τL [φ ]
]∥∥∥

L2(Ω ;X )

+

∥∥∥∥∥EγK
Γ

[
Eµδ

τL [φ ]
]
−

L

∑
`=0

EγK
Γ

M`

[
Eµδ

τ`
[φ ]−Eµδ

τ`−1 [φ ]
]∥∥∥∥∥

L2(Ω ;X )

. (11)

Since the first term on the right in (11) already contains the expectation with respect

to γK
Γ

, we simply obtain the discretization error from (6), ‖Eµδ

[φ ]−Eµδ

τL [φ ]‖X ≤ τL.
Inserting an expansion analagous to (9) into the second term of (11) yields∥∥∥∥∥ L

∑
`=0

(
EγK

Γ

[
Eµδ

τ`
[φ ]−Eµδ

τ`−1 [φ ]
]
−EγK

Γ

M`

[
Eµδ

τ`
[φ ]−Eµδ

τ`−1 [φ ]
])∥∥∥∥∥

L2(Ω ;X )

≤
L

∑
`=0

∥∥∥∥EγK
Γ

[
Eµδ

τ`
[φ ]−Eµδ

τ`−1 [φ ]
]
−E

γK
Γ

M`

[
Eµδ

τ`
[φ ]−Eµδ

τ`−1 [φ ]
]∥∥∥∥

L2(Ω ;X )

.

For each summand above, we use the standard Monte Carlo error bound that holds
for any M ∈ N, Y ∈ L2(Ω ;X ), i.e. ‖E[Y ]− E

γK
Γ

M [Y ]‖L2(Ω ;X ) ≤ 1√
M
‖Y‖L2(Ω ;X ).

Combining this with the given bound (7) as follows

∥∥∥Eµδ

τ`
[φ ]−Eµδ

τ`−1 [φ ]
∥∥∥

L2(Ω ;X )
= EγK

Γ

[∥∥∥Eµδ

τ`
[φ ]−Eµδ

τ`−1 [φ ]
∥∥∥2

X

] 1
2
≤

EγK
Γ

[(∥∥∥Eµδ

τ`
[φ ]−Eµδ

[φ ]
∥∥∥

X
+
∥∥∥Eµδ

[φ ]−Eµδ

τ`−1 [φ ]
∥∥∥

X

)2
] 1

2
≤C`τ`+C`−1τ`−1 ,

and using τ−1 = 0, we obtain a total sampling error bound of∥∥∥∥EγK
Γ

[
Eµδ

τL [φ ]
]
−E

γK
Γ

ML,L[E
µδ

τL [φ ]]

∥∥∥∥
L2(Ω ;X )

≤
L

∑
`=1

M
− 1

2
` (C`τ`+C`−1τ`−1)+C0M

− 1
2

0 .

Combined with the discretization error, the total error is then bounded by

etot ≤ τL +
L

∑
`=1

M
− 1

2
` (C`τ`+C`−1τ`−1)+C0M

− 1
2

0 . (12)

Theorem 2 (Optimal Tolerances). Given the sample distribution M` = bL−`+1, the
optimal tolerances for the inner expectation that minimize the total work bound at
given error are

τ` =
M
− 1

2
0

C(s,b,L)

(
M`

D`

) 1
s+1

, 0≤ `≤ L ,

for a constant C(s,b,L) and M−1 = D−1 = 0, D0 =C0M−1/2
1 , DL =CL(1+M−1/2

L )

and for 0 < ` < L, D` =C`(M
−1/2
` +M−1/2

`+1 ).
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Proof. The optimization problem we consider is the minimization of the total work
subject to the constraint that the discretization and sampling errors are equilibrated,

min
L

∑
`=0

M`w` s.t. τL +
L

∑
`=1

C`τ`+C`−1τ`−1√
M`

=
C0√
M0

,

where w` ∼ τ
−s
` , s > 0 denotes the work on level ` (for the Smolyak approach

mentioned above, we use s = ( 1
p −1)−1). Using Lagrange multipliers, one can im-

pose the necessary condition that the partial derivatives of the Lagrange function
L (τ0, . . . ,τL,λ )=∑

L
`=1 M`

1
τs
`
+λ
(
τL+∑

L
`=0

τ`+τ`−1√
M`
− C0√

M0

)
vanish in the optimum.

A straightforward calculation reveals that the total work when using M sam-
ples and the tolerances from above is bounded for 0 < s < 2 and a constant C(s,b)
by W L

tot ≤C(s,b)Mγ wL, γ = 2−s
2(s+1) ∈ (0,1). A slightly more involved computation

yields an optimal error versus work relationship with exponent −1/2, independent
of s, given by etot ∼C(s,b)

(
W L

tot
)−1/2.

5 Numerical Experiment

As a model problem of the abstract, (b, p,ε)-analytic operator equation described in
Section 2 we consider the diffusion equation−∇ ·(u∇p) = 100x in D := [0,1], p= 0
on ∂D with stochastic diffusion coefficient u modeled as a random field described
by u = u(y) := 〈u〉+∑

64
j=1 y jψ j ∈ X with constant mean 〈u〉 = 1, parameters y =

(y j)
64
j=1 ∈U := [−1,1]64 and basis functions ψ j =

0.9
j3 χD j , D j = [ j−1

64 , j
64 ) describing

the fluctuations and X = ∪64
j=1C0(D j). The problem is solved by a finite element

approach with piecewise linear basis functions on a uniform mesh. The meshwidth
is h = 2−14 to avoid discretization error effects. Given a noisy measurement with
η ∼N (0,1), our goal is to evaluate the conditional expectation Eµδ

[φ ] of the QoI
φ(u) = G (u). The observation operator O consists of a system response at x1 = 0.5.

For MLMC, the maximal level was chosen by numerically observing that (12) is
convex in L and increasing the value of L until the error bound stops decreasing. For
each L, b is computed such that ∑

L
`=0 M` = M is satisfied. The reference solution is

computed to high accuracy using 96-point Gauss-Hermite quadrature.

6 Conclusion

Assuming a given set of measured responses of a forward problem, a multilevel
Monte Carlo averaging method was derived by computing optimal values of for-
ward map evaluation tolerances on each level. Numerical results based on Bayesian
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102 103 104 105 106 107

Number of Forward Solves

10-3

10-2

E
R

[ |Eγ
[E

µ
δ

[φ
]]
−

γ
[
µ
δ

[φ
]]
|2
] 1 2

Binned MLMC
fit, m=−0.460

MC
fit, m=−0.381

Fig. 1 Convergence of L2 error approximation ER[|E
γ1

1
ML,L[E

µδ

τ`
[φ ]]−Eγ1

1 [Eµδ

[φ ]]|2] 1
2 with R = 200

vs. the work, which is assumed proportional to the number of forward evaluations. The theo-
retically computed rates are −1/3 for Monte Carlo (MC) and −1/2 for multilevel Monte Carlo
(MLMC). The number of measurements were M = 16,64,256,1024,4096,16384 and all toler-
ances were scaled with C = 0.1. For MLMC, the first point is not used in computing the slope, as
L = 0 which corresponds to a MC simulation.

inversion of a parametric diffusion equation confirm the analytically derived optimal
convergence rate of the error with respect to the work.
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