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In this paper, we introduce the results for the Schwarz waveform relaxation
(SWR) algorithm applied to a class of non-dissipative reaction diffusion equa-
tions. Both the Dirichlet and Robin transmission conditions (TCs) are con-
sidered. For the Dirichlet TC, we consider the algorithm for the nonlinear
problem ∂tu = µ∂xxu+f(u), in the case of many subdomains. For the Robin
TC, we consider the linear problem ∂tu = µ∂xxu + au with a ≥ 0. We focus
on the analysis of finding the optimal parameter involved in the Robin TC.
For small overlap size l = O(∆x) and ∆t = O(∆xr) with r < 4

3 , we show
that the equioscillation principle which works for a < 0 does not hold for
a ≥ 0. We show numerical results to support our theoretical conclusions.

1 Introduction

We are concerned with the SWR algorithm to compute solutions u = u(x, t) :
(0, L)× (0, T ) → R of the following problem

∂tu = µ∂xxu+ f(u), (x, t) ∈ (0, L)× (0, T ), (1)

where µ > 0 and f ∈ C1(R) denotes a function which in general depends
nonlinearly on u. For the case of two subdomains, Gander [1998] proved that
the classical SWR algorithm converges linearly on unbounded time intervals,

if f ′(u) satisfies f ′(u) <
(√

µπ/L
)2
. For the case f ′(u) ≤ 0, the analysis
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by Gander and Stuart [1998] and Wu et al. [2012] can be used to prove
convergence for the classical SWR algorithm in the case of N subdomains
(N ≥ 3). However, there are no results for the case N ≥ 3 and f ′(u) < d with
d > 0. In this paper, we show that the classical SWR algorithm is convergent

for N ≥ 3, provided f ′(u) ≤
(

ω∗√µπ/L
)2
, where ω∗ ∈ (0, 1) depends on N .

For the purpose of fast convergence, one should use the Robin TC for the
SWR algorithm, instead of the Dirichlet TC. For the linear model problem

∂tu = µ∂xxu+ au, (x, t) ∈ R× (0, T ), (2)

a key step for the convergence analysis is to solve a special min-max problem,
whose solution corresponds to the best choice of the parameter p involved in
the Robin TC. For a < 0, the optimization procedure has been deeply an-
alyzed by Gander and Halpern [2007] in the 1-D case, and by Bennequin
et al. [2009] in the 2-D case. Other related work also requires a < 0; see,
e.g., Halpern [2006]. For the case a > 0, the existing research always em-
ploys a variable transform, like v(x, t) = e−σtu(x, t), and then the original
equation is transformed to ∂tv = µ∂xxv + (a − σ)v with negative coeffi-
cient, a − σ < 0. However, this trick is not advisable for practical comput-
ing. Roughly speaking, for σ large, we find numerically that even though
maxj ‖vkj − v‖L∞([0,T ]×Ωj) is very small, maxj ‖uk

j − u‖L∞([0,T ]×Ωj) is still a

huge quantity, where j is the subdomain index, vkj denotes the k-th iterate

of the optimized SWR algorithm applied to the transformed problem and uk
j

is obtained from the inverse transform uk
j = eσtvkj (see Fig.3).

The parameter obtained for the linear problem (2) serves the optimized
SWR algorithm for the nonlinear problem (1), by using the ‘linearization’
idea introduced by Caetano et al. [2010]. For the nonlinear problem (1) with
f ′(u) ≥ 0, we first need to know the optimal parameter for (2) with a ≥ 0
and to the best of our knowledge there are no results up to now. Here, we
introduce our analysis of finding the best parameter for the Robin TC in the
case a ≥ 0. We show that, for overlap size l = O(∆x) small and∆t = O(∆xr),
the equioscillation principle established recently by Bennequin et al. [2009]
still holds, when r ≥ 4

3 . But for r < 4
3 , this principle does not hold.

2 Main Results

In this section, we present the main results about the classical and optimized
SWR algorithms. The concrete proof of the four propositions are given in our
forthcoming paper (Wu [2014]).
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2.1 Dirichlet Transmission Condition

The nonlinear IVP consists of the governing equation (1) and the initial and
boundary conditions

u(x, 0) = u0(x), x ∈ [0, L]; u(0, t) = g1(t), u(L, t) = g2(t), t > 0. (3)

The domain [0, L] is decomposed into N subdomains: Ωj = [αjL, βjL], j =
1, 2, . . . , N , where α1 = 0, βN = 1 and 0 < αj+1 < βj < 1 for j =
1, 2, . . . , N−1. We assume that βj < αj+2 so that all the subdomains overlap
but domains which are not adjacent do not overlap. Then, the N -subdomain
SWR algorithm with Dirichlet TC for the IVP (1) and (3) is

{

∂uk
j (x,t)

∂t
= µ

∂2uk
j (x,t)

∂x2 + f(uk
j (x, t)), (x, t) ∈ Ωj × R

+,

uk
j (αjL, t) = uk−1

j−1 (αjL, t), u
k
j (βjL, t) = uk−1

j+1 (βjL, t), t ∈ R+,

where k is the iteration index, uk
j (x, 0) = u0(x) for x ∈ Ωj , α0 = β0 = 0,

αN+1 = βN+1 = 1, uk
0 = g1(t) and uk

N+1 = g2(t) for all k ≥ 0. We assume
that the overlapping domains and the subdomains are all of the same sizes.

Proposition 1. Let l be the overlap size, N be the number of subdomains,
φ = l

L
π and ϕ = L−l

NL
π. Then, suppose the function f in (1) satisfies f ′(u) ≤

(√
µπ

L
ω∗

)2

(∀u ∈ R), the classical SWR algorithm with N ≥ 2 is convergent.

Here, ω∗ ∈ (0, 1) is the unique solution of r(ω) = 1 and r(ω) is defined by

r(ω) =
min{1, N − 2} sin2 (φω) + sin2 (ϕω) + 2 cos

(

π
N

)

sin (φω) sin (ϕω)

sin2 ((φ+ ϕ)ω)
.

2.2 Robin Transmission Condition

For the initial value problem (2) with a > 0, we decompose the spatial domain
R into two subdomains Ω1 = (−∞, l] and Ω2 = [0,+∞), where l ≥ 0. The
SWR algorithm with Robin TC is given by

{

∂tu
k
j = µ∂xxu

k
j + auk

j , x ∈ Ωj ,

(∂x + (−1)3−jp)uk
j ((2− j)l, t) = (∂x + (−1)3−jp)uk−1

3−j j((2 − j)l, t),

where j = 1, 2, uk
j (x, 0) = u0(x), k is the iteration index and p is a free

parameter. Based on Laplace transform and maximum principle of analytic
functions, we obtain the following results.

Proposition 2 (Overlapping case l > 0). Let l > 0 and a ≥ 0. Then,
the best performance of the SWR algorithm with Robin TC is obtained for
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p = popt =
qopt
2l . The argument qopt is solution of the min-max problem

min
q>0

max
y∈[y0,y1]

R(y, q), with R(y, q) =
(y − q)2 + y2 + z20
(y + q)2 + y2 + z20

e−y, z0 = 2l

√

a

µ
. (4)

where yj = 2l

√

(

√

a2 + (π/[j∆t+ (1 − j)T ])2 − a
)

/(2µ), j = 0, 1. Define

qmin =
√

2y20 + z20, qmax =
√

2y21 + z20 , R†(q) = max{R(y0, q),R(y1, q)},
q̃min = max

{

q1(z0), qmin,
q2
min

2

}

, q̃max = min
{

q2(z0), qmax,
q2
max

2

}

and

q† =











qmin, if R(y0, qmin) ≥ R(y1, qmin),

qmax, if R(y1, qmax) ≥ R(y0, qmax),

q†0, otherwise,

(5)

where q†0 ∈ (qmin, qmax) is the unique root of R(y0, q) = R(y1, q), and q1(z0)
and q2(z0) are two different positive roots of the cubic polynomial S(q, z0) =
q3+4q2−2q(2−z20)+8z20 for z0 ∈ (0, z∗0) with z∗0 = 0.31920496942508. Then,
the solution of the min-max problem (4) is given by

qopt =

{

qmax, if R†(q̃max) < R̄(q̃max),

q∗0 , if R†(q̃max) ≥ R̄(q̃max),
(6)

provided z0 < z∗0 , q̃min < q̃max, q† ∈ [q̃min, q̃max] and R†(q†) < R̄(q†), where
q∗0 ∈ [q†, qmax] is the unique root of R̄(q) = R(y0, q); otherwise qopt = q†.

Here, R̄(q) = R(ȳ(q), q) and ȳ(q) =

√

2q−z2

0
+
√

−qS(q,z0)

2 .

Proposition 3 (Non-overlapping case: l = 0). For l = 0 and a ≥ 0, the
best parameter popt for the Robin TC is given by

popt =











√

z2min + a0, if R0(zmin,
√

z2min + a0) ≥ R0(zmax,
√

z2min + a0),
√

z2max + a0, if R0(zmax,
√

z2max + a0) ≥ R0(zmin,
√

z2max + a0),

p∗0, otherwise,

(7)

where a0 = a
µ
and p∗0 is the unique root of R0(zmin, p) = R0(zmax, p).

Proposition 4 (Asymptotic properties). Let ∆t = C∆xr with some pos-
itive constants C and r. Then, for ∆x small and fixed length of the time in-
terval, the convergence factor ρRobin of the SWR algorithms with Robin TC
satisfies the following asymptotic properties:

l = 0 : ρRobin ≈ 1−O(∆t
1

4 ); l = Cl∆x : ρRobin ≈
{

1−O(∆x
r
4 ), if r ≤ 4

3 ,

1−O(∆x
1

3 ), otherwise.
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For T sufficiently large and fixed ∆x, we have the asymptotic properties:

ρRobin ≈











1−O(T−1), if l ≥ 0 and a > 0,

1−O(T− 1

6 ), if l > 0 and a = 0,

1−O(T− 1

4 ), if l = 0 and a = 0.

Remark 1. For the initial value problem (2) with a < 0, the min-max problem
concerning the best choice of the parameter is

min
q>0

max
y∈[y0,y1]

R(y, q), with R(y, q) =
(y − q)2 + y2 − y20
(y + q)2 + y2 − y20

e−y,

where y0 = 2l

√

(

√

a2 + (π/T )2 − a
)

/(2µ). We see that, this min-max prob-

lem is different from the one given by (4). For a < 0, ∆x small and
∆t = O(∆xr), the solution qopt is determined by the equioscillation prin-
ciple (Gander and Halpern [2007]); an illustration is shown in Fig. 1 on the
left. However, this principle does not always hold for the case a ≥ 0; in par-
ticular, we have shown that for ∆t = O(∆xr) with r < 4

3 , it does not hold
(Wu [2014]). A concrete example is shown in Fig. 1 on the right, where we
see that, based on the optimal parameter qopt, the local maximum of the
objective function R defined by (4) is smaller than R(y0, qopt).
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Fig. 1 Left: illustration of the equioscillation principle for the case a < 0. Right: an
example for a ≥ 0 and ∆t = O(∆xr) with r <

4

3
, where the equioscillation does not hold.

3 Numerical results

We consider the following linear problem with homogeneous initial and
boundary conditions:



6 Shu-Lin Wu

ut = uxx + au+ t2 sin(xt), (x, t) ∈ (0, 4)× (0, T ), (8)

The Laplace operator ∂xx is treated by the centered finite difference scheme
and then the derived system of ODEs is solved by the backward Euler method.

Example 1 (Dirichlet transmission condition). For (8), we choose
a > 0 and T = 60. Let ∆t = 0.02, ∆x = 0.01 and l = 2∆x (overlap size).
Then, from Proposition 1 we know that the allowed maximal a is 0.5814 for
N = 4 and 0.4312 for N = 16. In Figure 2, we show the measured error
corresponding to several choices of a. By “error” we denote here the discrete
L∞ norm in time and space of the difference between the converged solution
and the iterate. We see that when a tends to its allowed upper bound, the
SWR algorithm converges slowly.
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Fig. 2 Measured error of the classical SWR algorithm for different choices of a.

Example 2 (Robin transmission condition). We now choose T = 5
for (8), and ∆t = ∆x = 1

25 for the discretization parameters. For a > 0, by
employing a changed variables v(x, t) = e−σtu(x, t) the linear problem (8) can
be transformed to ∂tv = ∂xxv + (a− σ)v + e−σtt2 sin(xt) with homogeneous
initial and boundary conditions. Then, by choosing a large σ we will have
a− σ < 0. The SWR algorithm with negative coefficient a− σ can converge
very fast, while the error maxj

∥

∥eσtvkj − uj

∥

∥

∞,∞ diminishes slowly. By letting

l = 5∆x and a = 1.5, we illustrate this point in Figure 3 for σ = 2 (left) and
σ = 3.5 (right).

We next investigated how close the parameter popt given by Proposition 1
is to the best possible one for the numerical code. In Fig. 4 on the left (resp.
right), we computed the error after 5 (resp. 7) iterations by using various
p for the algorithm in the case of N = 2 (resp. N = 16) subdomains. We
see that the theoretically optimal choice popt predicts the optimal numerical
choice very well. The asymptotic behavior of the optimized SWR algorithm
is shown in Fig. 5, and we see that the results coincide with Proposition 4.
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Fig. 3 Measured diminishing rate of maxj ‖v
k
j − vj‖∞,∞ and maxj ‖e

σtvkj − uj‖∞,∞,
with two choices of σ: σ = 2 (left) and σ = 3.5 (right).
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N = 2, Problem (5.1) with a = 0.5

popt = 0.8961
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Fig. 4 Comparison of the numerical and analytical optimal parameter. Left: 2 subdomains
and l = 5∆x. Right: 16 subdomains and l = 4∆x.
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Fig. 5 Asymptotic behavior of the optimized SWR algorithm in the 2 subdomain case.

4 Conclusions

The behavior of Schwarz waveform relaxation (SWR) is well understood for
stable time-dependent PDEs. Less is known when the PDEs are not stable.
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We have introduced in this paper several results concerning the convergence
behavior of the SWR algorithm for a class of these unstable problems. The
results for the Dirichlet transmission condition can be regarded as an exten-
sion of the work by Gander [1998], Gander and Stuart [1998] and Wu et al.
[2012]. The results for the Robin transmission condition are extensions of the
work by Gander and Halpern [2007], Bennequin et al. [2009]. The detailed
proofs are given in our forthcoming paper (Wu [2014]).
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