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Abstract I
n this paper we study the performance of h- and p-multigrid algorithms for
high order Discontinuous Galerkin discretizations of elliptic problems. We
test the performance of the multigrid schemes employing a wide class of
smoothers and considering both two- and three-dimensional test cases.

1 Introduction

In the framework of multigrid solvers for Discontinuous Galerkin (DG)
schemes, the first contributions are due to Gopalakrishnan and Kanschat
[16] and Brenner and Zhao [10]. In [16] a V-cycle preconditioner for a Sym-
metric Interior Penalty (SIP) discretization of an elliptic problem is analyzed.
They prove that the condition number of the preconditioned system is uni-
formly bounded with respect to the mesh size and the number of levels. In
[10] V-cycle, F-cycle and W-cycle multigrid schemes for SIP discretizations
are presented and analyzed, employing the additive theory developed in [8, 9].
A uniform bound for the error propagation operator is shown provided the
number of smoothing steps is large enough. All the previously cited works
focus on low order, i.e., linear, DG approximations. With regard to high
order DG discretizations, h- and p-multigrid schemes are successfully em-
ployed for the numerical solution of many different kinds of problems, see
e.g. [14, 20, 22, 21, 24, 6], even if only few theoretical results are available
that show the convergence properties of the underlying algorithms. In the
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context of fast solution techniques for high order DG methods, we mention
[2, 12, 11], see also [1] were a substructuring preconditioner is analyzed for
an hp domain decomposition method with interior penalty mortaring. Re-
cently, in [3] a convergence analysis of W-cycle h- and p-multigrid algorithms
for a wide class of high order DG schemes is provided. More precisely, it is
shown that, if a Richardson smoother is employed, the W-cycle algorithms
converge uniformly with respect the granularity of the underlying mesh and
the number of levels; but the contraction factor of the scheme deteriorates
when increasing the polynomial order. As a further development of the re-
sults contained in [3], the aim of this paper is to investigate the performance
of h- and p-multigrid algorithms for high order DG methods, considering a
wide class of smoothers and addressing both two- and three-dimensional test
cases. The paper is organized as follows. In Section 2 we briefly introduce the
model problem and its DG discretization. The h- and p-multigrid methods
are described in Section 3. The numerical experiments are presented in Sec-
tion 4, where the W-cycle schemes are tested on two- and three-dimensional
problems.

2 Model problem and DG methods

Given an open, bounded polygonal/polyhedral domain Ω and a given func-
tion f ∈ L2(Ω), we consider the weak formulation of the Poisson problem
with homogeneous boundary conditions: find u ∈ H1

0 (Ω) such that

(∇u,∇v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω), (1)

where (·, ·)Ω denotes the standard L2 product. We consider a sequence of
discontinuous finite dimensional spaces Vk, k = 1, . . . ,K, defined as

Vk = {v ∈ L2(Ω) : v|E ∈Mpk(T ) ∀T ∈ Tk} k = 1, . . . ,K,

where Mpk is a suitable space of polynomials of degree pk ≥ 1 and Tk is a
partition of Ω with granularity hk. The sequence of spaces Vk is generated
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hk−1
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pk−1

Fig. 1 Sample of the space Vk and Vk−1 in the h- (left) and p- (right) multigrid schemes.
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with two different approaches, depending on whether we are interested in
h- or p-multigrid algorithms. In the h-multigrid algorithm, we fix the poly-
nomial approximation degree pk = p for all k = 1, . . . ,K, and the spaces
Vk are associated to a sequence of nested partitions {Tk}k=1,...,K obtained
from successive uniform refinements of an initial (coarse) shape regular and
quasi-uniform partition T1, cf. Fig. 1 (left). In p-multigrid schemes, the grid
is kept fixed on all the levels and from the level k to the level k − 1 the
polynomial degree is lowered down, i.e., pk−1 ≤ pk for any k = 2, . . . ,K, cf.
Fig. 1 (right). Notice that, with such a construction the spaces Vk are nested,
i.e., V1 ⊆ V2 ⊆ · · · ⊆ VK . For the sake of simplicity, we will also suppose
that the polynomial degrees pk satisfy the following local bounded variation
among levels: there exixts a constant C > 0 such that pk ≤ Cpk−1, for any
k = 2, . . . ,K.

For any level k, we denote by FIk and FBk the sets of interior and boundary
faces of Tk, respectively, set Fk = FIk ∪ FBk , and define the lifting operators

(Rk(τ ),η)Ω = −
∑
F∈Fk

(τ , {{η}})F ∀η ∈ [Vk]d, k = 1, . . . ,K,

(Lk(v),η)Ω = −
∑
F∈FI

k

(v, JηK)F ∀η ∈ [Vk]d, k = 1, . . . ,K,

where the jump and average trace operators are defined as in [5].

We next define the DG bilinear forms Ak(·, ·) : Vk × Vk → R, k = 1, . . . ,K,
as

Ak(w, v) = (∇w +Rk(JwK) + Lk(β · JwK),∇v +Rk(JvK) + Lk(β · JvK))Ω
− θ(Rk(JwK),Rk(JvK))Ω +

∑
F∈Fk

(σkJwK, JvK)F (2)

where, for a constant αk > 0, the stabilization function σk is defined as

σk|F =
αkp

2
k

min {diam(T+),diam(T−)}
F ∈ FIk , σk|F =

αkp
2
k

diam(T )
F ∈ FBk ,

T± being the two neighboring elements sharing the face F ∈ FIk . For θ = 1
and β = 0, the bilinear form (3) correspond to the SIP method [4], whereas
for θ = 1 and β a uniformly bounded (and possibly null) vector in Rd we
obtain the LDG bilinear form [13].

We are interested in solving the following problem on the finest level K:
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find uK ∈ VK such that AK(uK , vK) = (f, vK)Ω ∀vK ∈ VK , (3)

with a W -cycle multigrid method. Fixing a basis for VK , equation (3) is
equivalent to the following linear system of equations

AKuK = FK , (4)

where AK and FK are the matrix representations of the bilinear form AK(·, ·)
and of the right hand side in (3), respectively, and where, with a slight abuse
of notation, we used to the same symbol to denote both a function in the
finite element space VK and the vector of its expansion coefficients in a given
basis.

It can be shown that the bilinear form AK(·, ·) defined in (3) is continuous
and coercive with respect to the following (mesh-dependent) DG norm

‖v‖2DG,K =
∑
T∈TK

‖∇v‖2L2(T ) +
∑
F∈FK

‖σ1/2
K JvK‖2L2(F ),

and that the following error estimates are satisfied, cf. [23, 25, 18] for example.

Theorem 1. Let u be the exact solution of problem (1) such that u ∈ Hs+1(TK),
s ≥ 1, and let uK ∈ VK be the DG solution of problem (3). Then,

‖u− uK‖DG,K .
h
min(pK ,s)
K

p
s−µ/2
K

‖u‖Hs+1(TK),

with µ = 0 whenever a continuous interpolant can be built, cf. [25], or the
projector of [15] can be employed and µ = 1 otherwise.

3 W-cycle h- and p-multigrid algorithms

As usual in the multigrid framework, we will employ a recursive algorithm
to describe the multigrid scheme. To this aim, we define on each level k the
problem

Akzk = bk,

where Ak is the matrix representation of the bilinear form (3), and zk, bk
are vectors of dimension dim(Vk). The first ingredient to build a multigrid
algorithm are the intergrid transfer operators, which we denoted by Rkk−1
(prolongation from Vk−1 to Vk) and by Rk−1k (restriction from Vk to Vk−1).
Given we are considering nested spaces, we can simply take Rkk−1 as the

classical embedding operator and Rk−1k as its adjoint with respect to the
L2 scalar product. The second ingredient is a suitable smoother, which we

denote by Bk. Denoting by u
(0)
k ∈ Vk the initial guess, and by m1 and m2 the



Multigrid algorithms for high order DG methods 5

Algorithm 1 uk = MGW(k, bk, u
(0)
k ,m1,m2)

if k=1 then . Solution on the coarsest level

Solve Akuk = bk
else

for ` = 1, . . . ,m1 do . Pre-smoothing

Set B̃k = Bk, if ` is odd and B̃k = BT
k if ` is even.

u
(`)
k = u

(`−1)
k + B̃−1

k (bk −Aku
(`−1)
k );

end for
Set rk−1 = Rk−1

k (bk −Aku
(m1)
k ); . Restriction of the residual

Set u
(0)
k−1 = 0;

Call ēk−1 = MGW (k − 1, rk−1, u
(0)
k−1,m1,m2); . Recursion

Call ek−1 = MGW (k − 1, rk−1, ēk−1,m1,m2);

Set u
(m1+1)
k = u

(m1)
k + Rk

k−1ek−1;
for ` = m1 + 2, . . . ,m1 + m2 + 1 do . Post-smoothing

Set B̃k = Bk, if ` is odd and B̃k = BT
k if ` is even.

u
(`)
k = u

(`−1)
k + B̃−1

k (bk −Aku
(`−1)
k );

end for

Set uk = u
(m1+m2+1)
k ;

end if

number of pre- and post-smoothing steps, respectively, the W-cycle multigrid

algorithm uk = MGW(k, bk, u
(0)
k ,m1,m2) is defined recursively as shown in

Algorithm 1. We then employ Algorithm 1 to solve the linear system (4), i.e.,

uK = MGW(K, bK , u
(0)
K ,m1,m2).

Notice that if the spaces Vk are associated to a sequence of grids Tk with
variable mesh size and the polynomial degree is kept fixed on all the levels
we obtain the W -cycle h-multigrid scheme, whereas if the mesh is kept fixed
and the polynomial degree is lower down from one level to a coarser one we
then have a W -cycle p-multigrid algorithm.

We next introduce the following operator P k−1k : Vk → Vk−1

Ak−1(P k−1k v, w) = Ak(v,Rkk−1w) ∀v ∈ Vk, w ∈ Vk−1,

and the following discrete norm

|||v|||21,k = (Akv, v)k = Ak(v, v) ∀v ∈ Vk.

The error propagation operator associated to the W -cycle multigrid scheme
is given by

Ek,m1,m2
v =

{
0 k = 1,

Gm2

k (Ik −Rkk−1(Ik − E2
k−1,m1,m2

)P k−1k )Gm1

k v k > 1,
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where Ik is the identity operator, and Gk = Ik−B−1k Ak, cf. [17, 7]. The follow-
ing result, which is proved in [3], state that, whenever a Richardson smoother
is employed, the W-cycle algorithms converge uniformly with respect to the
granularity of the underlying mesh and the number of levels, provided the
number of smoothing steps is chosen sufficiently large, but the contraction
factor of the scheme deteriorates when increasing the approximation order.

Theorem 2. For any k, let Bk be the Richardson smoother, i.e., Bk = ΛkIk,
where Λk is an upper bound for the maximum eigenvalue of Ak. Then, there
exist a constant CW > 0 and an integer mW that are independent of the mesh
size, but dependent on the polynomial degree, such that

|||Ek,m1,m2
v|||1,k ≤ CW

p2+µk

(1 +m1)1/2(1 +m2)1/2
|||v|||1,k ∀v ∈ Vk, k = 2, . . . ,K,

provided m1 +m2 ≥ mW = mW(pk).

4 Numerical results

In this section we test the performance of the W-cycle h- and p-multigrid
schemes in both two- and three-dimensional test cases and with different
choices of smoothers. We compute the convergence factor as

ρ = exp

(
1

N
ln
‖rN‖2
‖r0‖2

)
,

with N denoting the iteration counts needed to achieve convergence up to a
relative tolerance of 10−8 and rN and r0 denoting the final and initial com-
puted residuals, respectively. Throughout the section we have employed an
equal number of pre- and post-smoothing steps, i.e., m1 = m2 = m, and
we have set the penalty parameter αk appearing in the definition of the DG
bilinear form as αk = 10, for any level k = 1, . . . ,K.

We first consider a two-dimensional example with Ω = (0, 1)2 and focus on
the performance of the h-multigrid algorithm. To this aim, we fix a coarse
(triangular/Cartesian) grid T1 with granularity h1 = 0.25 and consider a
sequence of nested grids Tk, k = 2, . . . ,K, obtained from successive uniform
refinements of T1. In Table 1 we report the computed convergence factors as
a function of the number of smoothing steps m and the number of levels K,
fixing the polynomial degree pk = p = 1, 2 for all the levels k = 1, . . . ,K.
The results reported in Table 1 have been obtained with the SIP method on
structured triangular grids and with the LDG scheme on Cartesian grids, and
employing a Richardson smoother. The symbol “-” means that the maximum
number of 1000 iterations has been reached without achieving the desired
tolerance. We have repeated the same set of experiments employing p = 3, 4,
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Table 1 2D test case, SIP and LDG methods, h-multigrid scheme. Convergence factor

as a function of the number of levels K, the polynomial approximation degree p, and the
number of smothing steps m. Richardson smoother.

SIP, triangular grids LDG, Cartesian grids

K = 2 K = 3 K = 4 K = 5 K = 2 K = 3 K = 4 K = 5

p = 1

m = 2 0.77 0.78 0.78 0.78 - - - -

m = 4 0.60 0.62 0.62 0.62 0.86 0.88 0.87 0.87
m = 10 0.38 0.40 0.40 0.39 0.74 0.76 0.76 0.75

p = 2

m = 2 0.93 0.94 0.93 0.78 0.96 0.96 0.96 0.96

m = 4 0.87 0.88 0.88 0.62 0.93 0.93 0.93 0.92
m = 10 0.76 0.77 0.77 0.39 0.88 0.88 0.88 0.87

and the same behavior as been observed; for brevity these results have been
omitted. As expected from Theorem 2, the convergence factor is independent
of the number of levels K, decreases when m increases, and the performance
of the algorithm deteriorates as p grows up.

Table 2 2D test case, SIP and LDG methods, h-multigrid scheme. Convergence factor as a

function of the number of levels K and the polynomial approximation order p. Richardson
smoother (m = 6).

SIP, triangular grids LDG, Cartesian grids

K = 2 K = 3 K = 4 K = 2 K = 3 K = 4

p = 1 0.50 0.51 0.50 0.81 0.82 0.82

p = 2 0.83 0.84 0.84 0.91 0.91 0.91

p = 3 0.91 0.92 0.91 0.94 0.94 0.93
p = 4 0.95 0.94 0.93 0.96 0.95 0.95

p = 5 0.96 0.95 0.94 0.97 0.95 0.96

p = 6 0.95 0.96 0.96 0.98 0.96 0.97

We next fix the number of pre- and post-smoothing steps m = 6, and in-
vestigate how the performance of the h-multigrid algorithm depends on the
polynomial degree, always employing a Richardson smoother. Table 2 shows
the computed convergence factors as a function of the polynomial degree
p = 1, 2, . . . , 6 and the number of levels K = 2, 3, 4, for both the SIP and
LDG methods. We observe that, as predicted by Theorem 2, the performance
of the h-multigrid algorithm are independent of the number of levels but de-
teriorates as p increases.
We next test the performance of the h-multigrid scheme employing differ-
ent smoothers as the Gauss-Seidel smoother of [16], an (elementwise) block
Gauss-Seidel smoother and the polynomial smoother proposed in [19]. In
Table 3 we report the computed convergence factors as a function of the
number of pre- and post-smoothing steps m = 2, 4, 10, the number of levels
K = 2, 3, 4 and the polynomial approximation degree p = 1, 2, 3, 4. These
results have been obtained with the SIP method and employing triangular
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Table 3 2D test case, SIP method (triangular grids), h-multigrid scheme. Convergence

factors as a function of the number of levels K, the polynomial approximation degree p,
and the number of smothing steps m. Gauss-Seidel, block Gauss-Seidel and polynomial

smoothers.

p = 1 p = 2 p = 3 p = 4

K → 2 3 4 2 3 4 2 3 4 2 3 4

Gauss-Seidel smoother

m = 2 0.55 0.56 0.56 0.80 0.80 0.80 0.88 0.87 0.86 0.92 0.92 0.93

m = 4 0.40 0.41 0.41 0.68 0.68 0.68 0.79 0.78 0.77 0.86 0.86 0.86

m = 10 0.20 0.21 0.21 0.44 0.44 0.44 0.61 0.59 0.58 0.71 0.71 0.70

block Gauss-Seidel smoother

m = 2 0.55 0.56 0.56 0.71 0.72 0.72 0.82 0.82 0.82 0.84 0.84 0.84
m = 4 0.40 0.42 0.41 0.54 0.56 0.55 0.70 0.70 0.70 0.73 0.73 0.73
m = 10 0.20 0.21 0.21 0.27 0.31 0.29 0.47 0.47 0.46 0.51 0.50 0.50

polynomial smoother

m = 2 0.30 0.31 0.31 0.68 0.69 0.68 0.80 0.80 0.78 0.89 0.88 0.87

m = 4 0.17 0.17 0.17 0.50 0.50 0.49 0.66 0.65 0.63 0.80 0.79 0.78
m = 10 0.07 0.07 0.06 0.21 0.21 0.21 0.40 0.38 0.37 0.60 0.59 0.59

grids. In all the cases the performance of the h-multigrid algorithm seems
to be fairly independent of the number of levels. Moreover, as expected, the
convergence factor decreases as the number of smoothing steps increases, but
still deteriorates as p grows up (even if the dependence of the convergence
factor on p seems to be weaker than for the Richardson smoother). Moreover,
all the smoothers outperform the Richardson smoother and the polynomial
smoother seems to provide the best convergence factors. The extension of
the convergence analysis presented in [3] to h-multigrid algorithms based on
these (more effective) smoothers is currently under investigation.

We next turn our attention to the performance of the p-multigrid scheme.
To this aim, we fix the finest computational level K, the mesh TK and the
polynomial approximation degree pK ≥ K employed therein. Then, for each
level k, we set pk−1 = pk − 1, k = K,K − 1, . . . , 2. In Table 4 we report the
computed convergence factors obtained with pK = 5 and varying the number
of smoothing steps m and the number of levels K. The results reported in
Table 4 have been obtained with the LDG and SIP methods and employing a
Richardson smoother. Next, we fix the number of smoothing steps m = 6 and
vary the polynomial approximation degree pK employed on the finest level.
The results obtained with the SIP method and employing the Richardson
smoother are reported in Table 5. From the results reported in Table 4 and
in Table 5, we can conclude that the p-multigrid scheme seems to be asymp-
totically uniform with respect to the number of levels (notice that in this
case the ratio pk/pk−1 is not constant from one level to the other), and that,
as expected, the performance of the algorithm improves as m increases. We
finally address the performance of the p-multigrid method when employing
a different smoother. For this set of experiments we have considered the SIP
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Table 4 2D test case, SIP and LDG methods, p-multigrid scheme. Convergence factor as

a function of the number of levels K and the number of smothing steps m. Richardson
smoother, pK = 5.

SIP, triangular grid LDG, Cartesian grid

K = 2 K = 3 K = 4 K = 2 K = 3 K = 4

m = 2 0.91 0.91 0.94 0.95 0.95 0.97
m = 4 0.85 0.85 0.90 0.88 0.89 0.92
m = 10 0.78 0.77 0.80 0.86 0.86 0.89

Table 5 2D test case, SIP and LDG methods, p-multigrid scheme. Convergence factor as
a function of the number of levels K and the polynomial degree pK . Richardson smoother

(m = 6).

SIP, triangular grid LDG, Cartesian grid

K = 2 K = 3 K = 4 K = 2 K = 3 K = 4

pK = 2 0.62 - - 0.83 - -

pK = 3 0.77 0.77 - 0.89 0.90 -
pK = 4 0.79 0.80 0.86 0.86 0.89 0.90

pK = 5 0.83 0.82 0.87 0.89 0.89 0.92

pK = 6 0.86 0.86 0.86 0.91 0.91 0.90

formulation and tested the Gauss-Seidel smoother. The results reported in
Table 6 show the computed convergence factors as a function of the number
of levels K, the number of smoothing steps m and the polynomial degree pK
employed on the finest level. The computed convergence factor seems to be
fairly insensitive to the number of levels employed in the algorithm and it
improves as the number of pre- and post-smoothing steps increases (notice
that, no restriction on the minimum number of smoothing steps seems to be
needed in this case). Nevertheless, the convergence factor still depends on the
polynomial degree even if such a dependence seems to be weaker than that
observed employing the Richardson smoother (cf. Table 5). Finally, compar-
ing these results with the ones reported in Table 5 it is clear that, as for the h-
multigrid algorithm, the Gauss-Seidel smoother outperforms the Richardson
smoother.

Table 6 2D test case, SIP method (triangular grid), p-multigrid scheme. Convergence
factor as a function of the number of levels K, the polynomial degree pK , and the number

of smoothing steps m. Gauss-Seidel smoother.

pK = 2 pK = 3 pK = 4 pK = 5 pK = 6

K → 2 2 3 2 3 4 2 3 4 2 3 4

m = 2 0.76 0.79 0.79 0.84 0.84 0.85 0.85 0.85 0.85 0.88 0.87 0.86

m = 4 0.60 0.66 0.66 0.73 0.73 0.73 0.75 0.75 0.75 0.79 0.78 0.77
m = 6 0.48 0.57 0.56 0.63 0.63 0.63 0.67 0.67 0.67 0.71 0.71 0.70

m = 10 0.34 0.44 0.44 0.49 0.49 0.49 0.56 0.56 0.56 0.59 0.58 0.58

We next present some three-dimensional numerical experiments. We have
employed an h-multigrid scheme to solve the linear system of equations arising
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Table 7 3D test case, SIP method (tetrahedral grids), h-multigrid scheme. Convergence

factors as a function of the number of levels K, the polynomial approximation degree p, and
the number of smothing steps m. Richardson, Gauss-Seidel, and symmetric Gauss-Seidel

smoothers.

p = 1 p = 2 p = 3

K = 2 K = 3 K = 4 K = 2 K = 3 K = 4 K = 2 K = 3

Richardson smoother

m = 2 0.57 0.55 0.53 0.82 0.81 0.80 0.90 0.90

m = 4 0.71 0.71 0.69 0.91 0.90 0.90 0.95 0.95

m = 10 0.46 0.44 0.41 0.79 0.78 0.77 0.88 0.88

Gauss-Seidel smoother

m = 2 0.57 0.55 0.53 0.82 0.81 0.79 0.89 0.89
m = 4 0.35 0.33 0.30 0.68 0.67 0.65 0.81 0.80
m = 10 0.13 0.15 0.12 0.43 0.41 0.40 0.61 0.60

symmetric Gauss-Seidel smoother

m = 2 0.35 0.33 0.30 0.68 0.67 0.65 0.81 0.80

m = 4 0.17 0.19 0.16 0.50 0.48 0.46 0.67 0.66
m = 10 0.05 0.08 0.07 0.22 0.22 0.20 0.41 0.39

from the SIP discretization of model problem (1) posed on Ω = (0, 1)3. We
employ a sequence of tetrahedral meshed obtained by successive uniform
refinements of an initial coarse grid with granularity h1 = 0.25. As before,
we fix pk = p for all the levels k = 1, 2, . . . ,K and consider the Richardson,
the Gauss-Seidel and the symmetric Gauss-Seidel smoothers. The computed
convergence factors varying the number of levels K, the number of pre-and
post-smoothing steps m as well as the polynomial degree p are reported in
Table 7. We observe that the performance of the h-multigrid schemes are
completely analogous to the one observed in the two-dimensional test case.
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