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1 Introduction

In Badea [2008], one- and two-level Schwarz methods have been proposed for
variational inequalities with contraction operators. This type of inequalities
generalizes the problems modeled by quasi-linear or semilinear inequalities. It
is proved there that the convergence rates of the two-level methods are almost
independent of the mesh and overlapping parameters. However, the original
convex set, which is defined on the fine grid, is used to find the corrections on
the coarse grid, too. This leads to a suboptimal computing complexity. A rem-
edy can be found in adopting minimization techniques from the construction
of multigrid methods for the constrained minimization of functionals. In this
case, to avoid visiting the fine grid, some level convex sets for the corrections
on the coarse levels have been proposed in Mandel [1984a], Mandel [1984b],
Gelman and Mandel [1990], Kornhuber [1994], Kornhuber [1996] and the re-
view article Graser and Kornhuber [2009] for complementarity problems, and
in Badea [2014] for two two-obstacle problems. In this paper, we introduce
and investigate the convergence of a new multigrid algorithm for the inequal-
ities with contraction operators, and we have adopted the construction of
the level convex sets which has been introduced in Badea [2014]. In this way,
the introduced multigrid method has an optimal computing complexity of
the iterations. Also, the convergence theorems for the methods introduced in
Badea [2008] contain a convergence condition depending on the total number
of the subdomains in the decompositions of the domain. The convergence
condition of a direct extension of these methods to more than two-levels will
introduce an upper bound for the number of mesh levels which can be used in
the method. In comparison with these methods, the convergence condition of
the algorithm introduced in this paper is less restrictive and depends neither
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on the number of the subdomains in the decompositions of the domain nor
on the number of levels. Moreover, this convergence condition is very similar
with the condition of existence and uniqueness of the solution of the problem.

The paper is organized as follows. In Section 2, the method is introduced
as a subspace correction algorithm in a general reflexive Banach space. Under
the same assumptions in Badea [2014] concerning the level convex sets where
we are looking for the corrections, we prove that the algorithm is globally
convergent and estimate the global convergence rate, provided that the con-
vergence condition is satisfied. In Section 3, we show that the algorithm can
be viewed as multilevel or multigrid methods if we associate finite element
spaces to the level meshes and to the domain decompositions at each level. In
Badea [2014], it has been proved that the assumptions made in the previous
section hold for problems having the convex set of two-obstacle type. For this
type of problems, we write the convergence rate of the proposed multigrid
method in function of the number of level meshes.

2 Abstract convergence results

We consider a reflexive Banach space V and let K ⊂ V be a nonempty closed
convex set. Let F : V → R be a Gâteaux differentiable functional and we
assume that there exist two constants α, β > 0 for which

α||v− u||2 ≤ 〈F ′(v)−F ′(u), v− u〉 and ||F ′(v)−F ′(u)||V ′ ≤ β||v− u||, (1)

for any u, v ∈ V . Above, we have denoted by F ′ the Gâteaux derivative of F ,
and V ′ is the dual space of V . Following the way in Glowinski et al. [1976],
we can prove that

〈F ′(u), v−u〉+
α

2
||v−u||2 ≤ F (v)−F (u) ≤ 〈F ′(u), v−u〉+

β

2
||v−u||2, (2)

for any u, v ∈ V . We point out that since F is Gâteaux differentiable and
satisfies (1), then F is a convex functional (see Proposition 5.5 in Ekeland
and Temam [1974], page 25). Also, let T : V → V ′ be an operator with the
property that there exists a constant γ > 0 such that

||T (v)− T (u)||V ′ ≤ γ||v − u|| for any v, u ∈ V. (3)

Now, we consider the quasi-variational inequality

u ∈ K : 〈F ′(u), v − u〉+ 〈T (u), v − u〉 ≥ 0 for any v ∈ K. (4)

Using (2), we get

α
2 ||v − u||2 ≤ F (v)− F (u) + 〈T (u), v − u〉 for any v ∈ K. (5)
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Problem (4) has a solution and it is unique (see Badea [2008], for instance) if

γ/α < 1. (6)

Now, let us assume that we have J closed subspaces of V , V1, . . . , VJ ,
and let Vji, i = 1, . . . Ij be some closed subspaces of Vj , j = J, . . . , 1. The
subspaces Vj , j = J, . . . , 1, will be associated with the grid levels, and, for
each level j = J, . . . , 1, Vji, i = 1, . . . Ij , will be associated with a domain
decomposition. Let us write I = maxj=J,...,1 Ij .

To introduce the algorithm, we make an assumption on choice of the convex
sets Kj , j = 1, . . . , J , where we look for the level corrections. The chosen level
convex sets depend on the current approximation in the algorithms.

Assumption 1 For a given w ∈ K, we recursively introduce the convex sets
Kj, j = J, J − 1, . . . , 1, as

- at level J : we assume that 0 ∈ KJ , KJ ⊂ {vJ ∈ VJ : w + vJ ∈ K} and
consider a wJ ∈ KJ ,

- at a level J − 1 ≥ j ≥ 1: we assume that 0 ∈ Kj and Kj ⊂ {vj ∈
Vj : w + wJ + . . .+ wj+1 + vj ∈ K}, and consider a wj ∈ Kj.

We now introduce the algorithm, which is of multiplicative type, and where
the argument of T is kept unchanged for several iterations.

Algorithm 1 We start the algorithm with an arbitrary u0 ∈ K. Assuming
that at iteration n ≥ 0 we have un ∈ K, we write ũn = un and carry out the
following two steps:
1. We perform κ ≥ 1 multiplicative iterations, keeping the argument of T
equal with un. We start with ũn and having ũn+k−1 at iteration 1 ≤ k ≤ κ,
we successively calculate level corrections and compute ũn+k:

- at the level J, we construct the convex set KJ as in Assumption 1, with
w = ũn+k−1. Then, we first write wk

J = 0, and, for i = 1, . . . , IJ , we suc-

cessively calculate wk+1
Ji ∈ VJi, w

k+ i−1

IJ

J + wk+1
Ji ∈ KJ , the solution of the

inequality

〈F ′(ũn+k−1 + w
k+ i−1

IJ

J + wk+1
Ji ), vJi − wk+1

Ji 〉+ 〈T (un), vJi − wk+1
Ji 〉 ≥ 0,

for any vJi ∈ VJi, w
k+ i−1

IJ

J + vJi ∈ KJ , and write w
k+ i

IJ

J = w
k+ i−1

IJ

J + wk+1
Ji ,

- at a level J − 1 ≥ j ≥ 1, we construct the convex set Kj as in As-
sumption 1 with w = ũn+k−1 and wJ = wk+1

J , . . . , wj+1 = wk+1
j+1 . Then, we

write wk+1
j = 0, and for i = 1, . . . , Ij, we successively calculate wk+1

ji ∈ Vji,

w
k+ i−1

Ij

j + wk+1
ji ∈ Kj, the solution of the inequality

〈F ′(ũn+k−1 +
∑J

l=j+1 w
k+1
l + w

k+ i−1

Ij

j + wk+1
ji ), vji − wk+1

ji 〉

+〈T (un), vji − wk+1
ji 〉 ≥ 0,

for any vji ∈ Vji, w
k+ i−1

Ij

j + vji ∈ Kj, and write w
k+ i

Ij

j = w
k+ i−1

Ij

J + wk+1
ji ,

- we write ũn+k = ũn+k−1 +
∑J

j=1 w
k+1
j .
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2. We write un+1 = ũn+k.

In order to prove the convergence of the above algorithm, we shall make
two new assumptions. In the case of the multigrid decompositions, the con-
stants of some inequalities can be taken independent of the number J of levels,
the classical Cauchy-Schwarz inequality can be strengthened, for instance. In
this sense we make the following assumption.

Assumption 2 1. There exist some constants 0 < βjk ≤ 1, βjk = βkj,
j, k = J, . . . , 1, such that 〈F ′(v+vji)−F

′(v), vkl〉 ≤ ββjk||vji||||vkl||, for any
v ∈ V , vji ∈ Vji, vkl ∈ Vkl, i = 1, . . . , Ij and l = 1, . . . , Ik.

2. There exists a constant C1 such that ||
∑J

j=1

∑Ij
i=1 wji|| ≤

C1(
∑J

j=1

∑Ij
i=1 ||wji||

2)
1
2 , for any wji ∈ Vji, j = J, . . . , 1, i = 1, . . . , Ij.

Evidently, for the moment, we can consider C1 = (IJ)
1
2 and βjk = 1, j, k =

J, . . . , 1. The second new assumption refers to additional properties asked to
the convex sets Kj , j = 1, . . . , J , introduced in Assumption 1.

Assumption 3 There exists a constant C2 > 0 such that for any w ∈ K,
wji ∈ Vji, wj1 + . . .+ wji ∈ Kj, j = J, . . . , 1, i = 1, . . . , Ij, and u ∈ K, there
exist uji ∈ Vji, j = J, . . . , 1, i = 1, . . . , Ij, which satisfy
uj1 ∈ Kj and wj1 + . . .+ wji−1 + uji ∈ Kj , i = 2, . . . , Ij , j = J, . . . , 1,

u− w =
∑J

j=1

∑Ij
i=1 uji, and

∑J

j=1

∑Ij
i=1 ||uji||

2 ≤ C2
2

(

||u− w||2 +
∑J

j=1

∑Ij
i=1 ||wji||

2
)

.

The convex sets Kj, j = J, . . . , 1, are constructed as in Assumption 1 with

the above w and wj =
∑Ij

i=1 wji, j = J, . . . , 1.

The global convergence of Algorithm 1 is proved by

Theorem 1. Let V be a reflexive Banach space, Vj, j = 1, . . . , J , closed sub-
spaces of V , and Vji, i = 1, . . . , Ij, some closed subspaces of Vj, j = 1, . . . , J .
Let K be a non empty closed convex subset of V , and we suppose that Assump-
tions 1-3 hold. Also, we assume that F is a Gâteaux differentiable functional
which satisfies (1) and the operator T satisfies (3). On these conditions, if

γ/α < 1/2 (7)

and κ satisfies

(
C̃

C̃ + 1
)κ <

1− 2 γ
α

1 + 3 γ
α
+ 4 γ2

α2 + γ3

α3

, (8)

where constant C̃ is given by

C̃ =
1

C2ε

[

1 + C2 + C1C2 +
C2

ε

]

, ε =
α

2βI(maxk=1,··· ,J

∑J
j=1 βkj)C2

, (9)

then Algorithm 1 is convergent and we have the following error estimations:
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F (un+1) + 〈T (u), un+1〉 − F (u)− 〈T (u), u〉

≤ [2 γ
α
+ ( C̃

C̃+1
)κ(1 + 3 γ

α
+ 4 γ2

α2 + γ3

α3 )]
n

·[F (u0) + 〈T (u), u0〉 − F (u)− 〈T (u), u〉],

(10)

‖un − u‖2 ≤ 2
α
[2 γ

α
+ ( C̃

C̃+1
)κ(1 + 3 γ

α
+ 4 γ2

α2 + γ3

α3 )]
n

·[F (u0) + 〈T (u), u0〉 − F (u)− 〈T (u), u〉].
(11)

Proof. First, we see that in view of (5), (11) can be obtained from (10). Now,
for a fixed n ≥ 0, let us consider the problem

ũ ∈ K : 〈F ′(ũ), v − ũ〉+ 〈T (ũn), v − ũ〉 ≥ 0, for any v ∈ K, (12)

where ũn = un ∈ K is the approximation obtained from Algorithm 1 after n
iterations. By applying Theorem 2.2 in Badea [2014] to variational inequality
(12) we get that after κ iterations the following error estimation holds

F (ũn+κ) + 〈T (ũn), ũn+κ〉 − F (ũ)− 〈T (ũn), ũ〉

≤ ( C̃

C̃+1
)κ[F (ũn) + 〈T (ũn), ũn〉 − F (ũ)− 〈T (ũn), ũ〉]

or
F (un+1) + 〈T (un), un+1〉 − F (ũ)− 〈T (un), ũ〉

≤ ( C̃

C̃+1
)κ[F (un) + 〈T (un), un〉 − F (ũ)− 〈T (un), ũ〉],

(13)

where C̃ is given in (9). From (2), (12) and (3), we have

F (ũ) + 〈T (u), ũ〉 − F (u)− 〈T (u), u〉+ α
2 ||ũ− u||2

≤ 〈F ′(ũ), ũ− u〉+ 〈T (un), ũ− u〉+ 〈T (u)− T (un), ũ− u〉
≤ 〈T (u)− T (un), ũ− u〉 ≤ γ||u− un||||u− ũ|| ≤ γ

2 ||u− un||2 + γ
2 ||u− ũ||2.

From (4) and using again (2), we get

α
2 ||u− un||2 ≤ 〈F ′(u), u− un〉+ F (un)− F (u)
≤ F (un) + 〈T (u), un〉 − F (u)− 〈T (u), u〉.

(14)

From the last two equations, in view of (7), we get

F (ũ) + 〈T (u), ũ〉 − F (u)− 〈T (u), u〉
≤ γ

α
[F (un) + 〈T (u), un〉 − F (u)− 〈T (u), u〉].

(15)

Now, we have

F (un+1) + 〈T (u), un+1〉 − F (u)− 〈T (u), u〉
= F (un+1) + 〈T (un), un+1〉 − F (ũ)− 〈T (un), ũ〉
+F (ũ) + 〈T (u), ũ〉 − F (u)− 〈T (u), u〉
+〈T (u)− T (un), un+1 − ũ〉.

(16)

But, in view of (13), we get
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F (un+1) + 〈T (un), un+1〉 − F (ũ)− 〈T (un), ũ〉

≤ ( C̃

C̃+1
)κ[F (un) + 〈T (un), un〉 − F (ũ)− 〈T (un), ũ〉]

= ( C̃

C̃+1
)κ[F (un) + 〈T (u), un〉 − F (u)− 〈T (u), u〉

+F (u) + 〈T (u), u〉 − F (ũ)− 〈T (u), ũ〉]

+( C̃

C̃+1
)κ〈T (un)− T (u), un − ũ〉.

(17)

It follows from (16), (17), (15) and (3) that

F (un+1) + 〈T (u), un+1〉 − F (u)− 〈T (u), u〉

≤ ( C̃

C̃+1
)κ[F (un) + 〈T (u), un〉 − F (u)− 〈T (u), u〉]

+[1− ( C̃

C̃+1
)κ][F (ũ) + 〈T (u), ũ〉 − F (u)− 〈T (u), u〉]

+( C̃

C̃+1
)κ〈T (un)− T (u), un − ũ〉+ 〈T (u)− T (un), un+1 − ũ〉

≤ [( C̃

C̃+1
)κ − γ

α
( C̃

C̃+1
)κ + γ

α
][F (un) + 〈T (u), un〉 − F (u)− 〈T (u), u〉]

+γ( C̃

C̃+1
)κ||un − u||||un − ũ||+ γ||un − u||||un+1 − ũ||.

Also, we have

( C̃

C̃+1
)κ||un − u||||un − ũ||+ ||un − u||||un+1 − ũ||

≤ ( C̃

C̃+1
)κ(||un − u||2 + ||un − u|||u− ũ||) + ||un − u||||un+1 − ũ||

≤ 1
2 [3(

C̃

C̃+1
)κ + 1]||un − u||2 + 1

2 (
C̃

C̃+1
)κ||u− ũ||2 + 1

2 ||u
n+1 − ũ||2.

Therefore, from the last two equation, we have

F (un+1) + 〈T (u), un+1〉 − F (u)− 〈T (u), u〉

≤ [( C̃

C̃+1
)κ − γ

α
( C̃

C̃+1
)κ + γ

α
][F (un) + 〈T (u), un〉 − F (u)− 〈T (u), u〉]

+γ
2 [3(

C̃

C̃+1
)κ + 1]||un − u||2 + γ

2 (
C̃

C̃+1
)κ||u− ũ||2 + γ

2 ||u
n+1 − ũ||2.

(18)

From (2), (4) and (15) we have

α
2 ||ũ− u||2 ≤ 〈F ′(u), u− ũ〉+ F (ũ)− F (u) ≤ F (ũ) + 〈T (u), ũ〉
−F (u)− 〈T (u), u〉 ≤ γ

α
[F (un) + 〈T (u), un〉 − F (u)− 〈T (u), u〉].

(19)

In view of (2), (12), (17) and (3), we get

α
2 ||u

n+1 − ũ||2 ≤ 〈F ′(ũ), ũ− un+1〉+ F (un+1)− F (ũ)

≤ ( C̃

C̃+1
)κ[F (un) + 〈T (u), un〉 − F (u)− 〈T (u), u〉

+F (u) + 〈T (u), u〉 − F (ũ)− 〈T (u), ũ〉] + γ( C̃

C̃+1
)κ||un − u||||un − ũ||.

As previously, using (14) and (19), we get

||un − u||||un − ũ|| ≤ 3
2 ||u

n − u||2 + 1
2 ||u− ũ||2

≤ [ 3
α
+ γ

α2 ][F (u
n) + 〈T (u), un〉 − F (u)− 〈T (u), u〉].
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From the last two equations, since F (u)−F (ũ) + 〈T (u), u− ũ〉 ≤ 0, we have

α
2 ||u

n+1 − ũ||2 ≤ ( C̃

C̃+1
)κ[1 + 3 γ

α
+ γ2

α2 ]

·[F (un) + 〈T (u), un〉 − F (u)− 〈T (u), u〉].
(20)

Finally, from (18), (14), (19) and (20), we get

F (un+1) + 〈T (u), un+1〉 − F (u)− 〈T (u), u〉

≤ [2 γ
α
+ ( C̃

C̃+1
)κ(1 + 3 γ

α
+ 4 γ2

α2 + γ3

α3 )][F (u
n) + 〈T (u, un)− F (u)− 〈T (u, u)].

Remark 1. Theorem 1 shows that if the convergence condition (7) is satisfied
and the number κ of the intermediate iterations is sufficiently large then
Algorithm 1 converges and error estimation (11) holds.

3 Multilevel and multigrid methods

We consider a family of regular meshes Thj
of mesh sizes hj , j = 1, . . . , J

over the domain Ω ⊂ Rd and assume that Thj+1
is a refinement of Thj

,
j = 1, . . . , J − 1. Also, at each level j = 1, . . . , J , we consider an overlapping
decomposition {Ωi

j}1≤i≤Ij of Ω, and assume that the mesh partition Thj

supplies a mesh partition for each Ωi
j , 1 ≤ i ≤ Ij .

At each level j = 1, . . . , J , we introduce the linear finite element spaces
Vhj

whose elements vanish on ∂Ω. Also, for i = 1, . . . , Ij , we consider the
subspaces V i

hj
of Vhj

whose elements vanish on Ω\Ωi
j . With these spaces,

Algorithm 1 becomes a multilevel method. In Badea [2014], for a problem of
two-obstacle type, K = [ϕ,ψ], level convex sets Kj = [ϕj , ψj ], j = 1, . . . , J ,
satisfying Assumption 1 have been constructed. Also, it has been proved there
that Assumption 3 holds with the constant
C2 = CI2(J − 1)

1
2 [
∑J

j=2 Cd(hj−1, hJ )
2]

1
2 ,

where
Cd(H,h) := 1 if d = 1, (ln H

h
+ 1)

1
2 if d = 2 and (H

h
)

d−2

2 if 2 < d,
d being the Euclidean dimension of the space where the domain Ω lies and C
is a constant independent of J and Ij , i = 1, · · · , J . Consequently, Theorem 1
shows that the multilevel method corresponding to Algorithm 1 is convergent
and we can explicitly write its convergence rate.

If the level decompositions of the domain are given by the supports of the
nodal basis functions of the spaces Vhj

, j = J, . . . , 1, Algorithm 1 becomes
a multigrid method. In this case, it is proved in Badea [2014] that we can

take C1 = C and maxk=1,...,J

∑J

j=1 βkj = C, where C ≥ 1 is a constant
independent of the number of meshes. By expressing the constant C2 only in
function of J , the following result is a direct consequence of Theorem 1,
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Corollary 1. As a function of the number J of levels, the error estimate of
the multigrid method obtained from Algorithm 1 can be written as

‖un − u‖21 ≤ C
[

2 γ
α
+
(

C̃(J)

C̃(J)+1

)κ (

1 + 3 γ
α
+ 4 γ2

α2 + γ3

α3

)]n

,

where || · ||1 is the norm of H1(Ω) and C̃(J) = CJSd(J)
2, in which Sd(J) is

[

∑J
j=2 Cd(hj−1, hJ )

2
]

1
2

expressed in function of J ,

Sd(J) := (J − 1)
1
2 if d = 1, CJ if d = 2 and CJ if d = 3,

constant C being independent of the number of levels J .
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