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Abstract In this paper, we develop an overlapping domain decomposition
(DD) based Jacobi-Davidson (JD) algorithm for a polynomial eigenvalue
problem arising from quantum dot simulation. Both DD and JD have several
adjustable components. The goal of the work is to figure out if it is possible to
choose the right components of DD and JD such that the resulting approach
has a near linear speedup for a fine mesh calculation. Through experiments,
we find that the key is to use two different coarse meshes. One is used to
obtain a good initial guess that helps to achieve quadratic convergence of
the nonlinear JD iterations. The other guarantees scalable convergence of
the linear solver of the correction equation. We report numerical experiments
carried out on a supercomputer with over 10,000 processors.

1 Introduction

Quantum dot (QD) is a semiconducting nanostructure where electrons are
confined in all three spatial dimensions [8], as shown in Fig. 1. The quantum
states of the pyramidal quantum dot with a single electron can be described
by the time-independent 3D Schrödinger equation

−∇ ·
(

~2

2m(r, λ)
∇u
)

+ V (r)u = λu, (1)

defined on a cuboid Ω, where λ is called an energy state or eigenvalue, and
u is the corresponding wave function or eigenvector. In (1), ~ is the reduced
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Fig. 1 Structure of a pyramidal quantum dot embedded in a cuboid. The size of the cuboid

is 24.8nm×24.8nm×18.6nm; the width of the pyramid base is 12.4nm and the height of

the pyramid is 6.2nm.

Plank constant, r is the space variable, m(r, λ) is the effective electron mass,
and V (r) is the confinement potential.

The Ben Daniel-Duke interface condition(
1
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∂D+

is imposed on the interface, where D denotes the domain of the pyramid
dot and n is the unit outward normal of ∂D. We impose the homogeneous
Dirichlet boundary condition u = 0 on the boundary of the cuboid. For
details, see [3, 8] and references therein.

A cell-centered finite volume method on an uniform mesh in Cartesian co-
ordinates is applied to discretize the Schrödinger equation with non-parabolic
effective mass model [3]. Then we obtain the polynomial eigenvalue problem

(λ5A5 + λ4A4 + λ3A3 + λ2A2 + λA1 +A0)x = 0, (2)

where λ ∈ C, x ∈ CN , Ai ∈ RN×N , and N is the total number of unknowns.
The matrices A0 and A1 are diagonal, and all other matrices are nonsym-
metric.

The rest of the paper is organized as follows. In Section 2, we first recall
the convergence of the single-vector version of Jacobi-Davidson (JD) based
on the residual of the approximate eigenpair for solving the general polyno-
mial eigenvalue problem of degree m. Then we propose a three-grid parallel
domain decomposition based JD algorithm for computing the relevant quan-
tum dot eigenvalues and the corresponding eigenvectors. Numerical results
are reported in Section 3. Some finial remarks are given in Section 4.

2 Jacobi-Davidson algorithm and domain decomposition
based preconditioners

For given Ai ∈ CN×N , i = 0, 1, · · · ,m, we define Aφ =
∑m
i=0 φ

iAi as a
matrix polynomial of φ ∈ C. If there exist λ ∈ C and x ∈ CN such that
Aλx = 0, then λ is called an eigenvalue of Aφ and x is the eigenvector of Aφ
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associated with the eigenvalue λ. There are several versions of JD for solving
eigenvalue problems; see [4? ? ] and references therein. A relatively simple
version referred to as JD1 in this paper is summarized in Algorithm 1 below.

Algorithm 1 JD1 for polynomial eigenvalue problems

Input: Ai for i = 0, · · · ,m, and the maximum number of iterations k.

1: Choose an initial eigenvector u0 with ‖u0‖2 = 1.
For n = 0, · · · , k

2: Solve u∗nAφn
un = 0 for a new eigenvalue approximation φn.

3: Compute the residual rn = Aφn
un.

4: If the stopping criteria is satisfied, then stop.
5: Compute pn = A′φn

un =
(∑m

i=1 iφ
i−1
n Ai

)
un.

6: Solve ‖(I − (pnu
∗
n)/(u∗npn))Aφnzn + rn‖2 ≤ εn‖rn‖2, zn ⊥ un.

7: Compute a new eigenvector approximation un+1 = (un+zn)/‖un+zn‖2.
End for

Theorem 1. Let Pn = pnu
∗
n/(u

∗
npn) and (λ, x) be an eigenpair of Aφ. There

exists D(λ, x, d) = {φ ∈ C, u ∈ CN : Aφ is nonsingular and ‖Aφu‖2 < d}.
If the initial eigenpair (φ0, u0) and any eigenpair (φn, un) generated by JD1
are all in D(λ, x, d), then the residuals satisfy

‖(I − Pn)rn+1‖2 ≤ εn‖rn‖2 + ξn‖rn‖22 +O(‖rn‖32) (3)

if Aφn is non-Hermitian, and

‖(I − Pn)rn+1‖2 ≤ εn‖rn‖2 + ζn‖rn‖32 +O(‖rn‖42) (4)

if Aφn
is Hermitian. Here, ξn and ζn depend on εn, φn and Ai’s.

Because of the page limit, the proof of the theorem is not shown. Theorem
1 implies that if rn+1 is orthogonal to un, then I − Pn can be removed from
the left-hand sides without changing the right-hands sides of (3) and (4).
The authors of [4] suggest that a subspace Vn+2 is built by all the correction
vectors u′ns and the initial vector u0. Then a new approximate eigenvector
un+1 is extracted from the subspace with the Galerkin condition rn+1 ⊥
Vn+2. We will refer the resulting method as the JD algorithm described in
Algorithm 2 below. In the JD algorithm, rn+1 is orthogonal to any ui for
i ≤ n + 1, which leads to (I − Pn)rn+1 = rn+1. Thus one can reasonably
expect that the JD algorithm has a quadratic or cubic convergence if εn is
sufficiently small relative to the residual.

Algorithm 2 JD for polynomial eigenvalue problems

Input: Ai for i = 0, · · · ,m, and the maximum number of iterations k.

1: Let V = [v], where v is an initial eigenvector such that ‖v‖2 = 1.
For n = 0, · · · , k

2: Compute Wi = AiV and Mi = V HWi for i = 0, · · · ,m.
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3: Solve the projected polynomial eigenvalue problem
(∑m

i=0 φ
iMi

)
s = 0,

then obtain the desired eigenpair (φ, s) such that ‖s‖2 = 1.
4: Compute the Ritz vector u = V s, and the residual vector r = Aφu.
5: If the stopping criteria is satisfied, then stop.
6: Compute p = A′φu =

(∑m
i=1 iφ

i−1Ai
)
u.

7: Solve ‖(I − (pu∗)/(u∗p))Aφ(I − uu∗)t+ r‖2 ≤ εn‖r‖2, t ⊥ u.
8: Orthogonalize t against V , set v = v/‖t‖2, then expand V ← [V, v].

End for

Remark 1. If the initial guess is good enough, and if the tolerance of the
correction equation satisfies εn ≤ O(‖rn‖2), then the JD algorithm may
converge quadratically, but we are unable to theoretically prove this.

Remark 2. If εn is chosen as a constant independent of n, then the con-
vergence can only be linear in theory, however, in practice, if the constant
tolerance is reasonably small, quadratic or near quadratic convergence has
been observed in our numerical experiments.

In the entire JD approach, the linear correction equation is the most ex-
pensive part of the calculation since it is in the inner most loop. In earlier
work, people often restrict the number of iterations to be carried out for the
correction equation to be a small number (5 or 10) without considering how
large the residual is when the iteration is stopped. This does cut down the
computational cost per iteration, but as a result, the outer JD iteration may
not have a quadratic convergence. In this paper, we make sure the correction
equation is solved to a certain accuracy. A two-level preconditioner with a
sufficiently fine coarse grid is used to control the number of iterations and
scalability of the correction equation solver.

In JD, the preconditioner is of the form M̃ = (I − (pu∗)/(u∗p))M(I−uu∗),
where M is an approximation of Aφ. We assume that the Krylov subspace

method starts with an initial vector t = 0, and is preconditioned by M̃ from
the right with a fixed φ. In the Krylov solver, we have to compute x = M̃−1y
at each iteration. To avoid forming M̃−1 explicitly, we solve a linear system
M̃x = y for x. Assume that x is orthogonal to u. It is straightforward to show
that x takes the following form x = M−1y − (u∗M−1y)/(u∗M−1p)M−1p.
Thus, for solving each correction equation, we need to compute s = M−1y at
each iteration of Krylov subspace method, while compute M−1p only once.

In our method, we let M−1 be a two-level multiplicative type Schwarz
preconditioner [1, 2]. Its multiplication with a vector y requires two steps:

s← IhcM
−1
c Rchy,

s← s+M−1f (y −Aφs).

Here, Mc is a preconditioner defined on the coarse mesh Ωc. To obtain Mc,
we discretize the Schrödinger equation (1) on Ωc by the finite volume method
mentioned in Section 1 and then obtain a coarse mesh polynomial eigenvalue
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problem
(∑m

i=0 λ
iBi
)
x = 0. For this particular quantum dot simulation that

we are interested, m is equal to 5. The matrix Bi (i = 0, · · · ,m) is much
smaller than Ai in (2), but has the same nonzero structure pattern as Ai.
Then we define Mc =

∑m
i=0 φ

iBi, where φ is the Ritz value computed on the
fine mesh Ωf .

In the first step of the two-level Schwarz preconditioner, Ihc is an interpo-
lation from Ωc to Ωf , and Rch is a restriction from Ωf to Ωc. As before, com-
puting w = M−1c (Rchy) is equivalent to solving a linear system Mcw = Rchy.
In practice, we solve it approximately using a Krylov subspace method pre-
conditioned by a one-level RAS preconditioner defined on the coarse mesh
Ωc using the same number of processors as on the fine mesh. In the second
step of the two-level preconditioner, Mf is the RAS preconditioner defined
on the fine mesh Ωf .

To build the RAS preconditioners, we partition the cuboid into non-
overlapping subdomains ωi, i = 1, · · · , np, then generate the overlapping
subdomain ωδi by including the δ layers of mesh cells in the neighboring sub-
domains of ωi, i.e., ωi ⊂ ωδi . Here, np is the number of processors that is the
same as the number of subdomains, and δ is the size of overlap. Let R0

i and
Rδi be restriction operators to non-overlapping and overlapping subdomains,
respectively. With Rδi , we define the matrix Ji = RδiAφ(Rδi )

T . Then the one-
level RAS preconditioner reads as M−1RAS =

∑np
i=1(R0

i )
TJ−1i Rδi . In practice,

J−1i is not formed explicitly, instead it is approximated by ILU factorization.
In theory, a good initial guess implies good convergence of JD, but in

practice, it is a nontrivial issue to find the right initial guess, especially when
both the accuracy and the computational cost need to be balanced since
our goal is to achieve near linear speedup measured by the total compute
time. For convenience (less coding, less memory required, and computation-
ally cheaper), the coarse mesh for finding the initials is usually chosen to be
the coarse mesh of the two-level Schwarz method. However, as is shown in the
next section, the coarse mesh of the two-level Schwarz preconditioner in this
paper is not suitable to generate the initial guess since it is still very large.
Note that only several eigenpairs around the ground state are of interests in
this simulation. As a result, we have to generate another much coarser mesh
Ωo for computing the initials.

On Ωo, we discretize the Schrödinger equation using the finite volume
method mentioned in Section 1. Next, the resulting polynomial eigenvalue
problem is solved using, for instance, the QZ method with linearization. Once
we obtain the desired eigenpair (φo, vo), φo is used as the initial eigenvalue
and vo is interpolated to the fine mesh Ωf to generate the initial eigenvector
on the fine mesh vh ← Iho vo, where Iho is an interpolation operator from Ωo to
Ωf . Due to the small size, (φo, vo) is computed redundantly on all processors.

With the coarse and fine grids, we describe the three-grid parallel domain
decomposition based JD algorithm in Algorithm 3.

Algorithm 3 Three-grid parallel domain decomposition based JD algorithm
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for polynomial eigenvalue problems

Input: Coefficient matrices on Ωo, Ωc and Ωf for i = 0, · · · ,m.

1: On Ωc, solve the polynomial eigenvalue problem roughly and obtain the
desired eigenpair (φo, vo).

2: Obtain the initial eigenvector on the fine mesh vh ← Iho vo.
3: Solve the polynomial eigenvalue problem on Ωf by Algorithm 2. At

each iteration, the correction equation is solved to a modest accuracy
by Krylov subspace method with either one-level or two-level precondi-
tioner.

3 Numerical results

We use Algorithm 3 to compute 6 smallest positive eigenvalues and the cor-
responding eigenvectors of the pyramidal quantum dot problem as shown in
Fig. 1. The physical parameters in the non-parabolic effective mass model
are the same as described in [3]. The software is implemented using PETSc
[5], SLEPc [7] and PJDPack [3].

The fine mesh Ωf is 600×600×450 with 161,101,649 unknowns. The coarse
mesh Ωo to generate the initial guess is 12×12×9 with 968 unknowns. Due
to the small size of Ωo, the Schrödinger equation discretized on Ωo is solved
redundantly on all processors using JD with the one-vector as the initial
guess. The JD iteration is stopped when either the absolute or the relative
residual norm is below 10−8. The eigenvectors on Ωo are interpolated to the
fine mesh by trilinear interpolation.

On Ωf , we stop the JD iteration when either the absolute or the relative
residual norm is below 10−10. The correction equation is solved by the flexible
GMRES (FGMRES) without restarting [6] preconditioned by either one-level
or two-level preconditioners. The stopping criteria of FGMRES on Ωf is 10−4.
For the two-level Schwarz preconditioner, we solve the linear system on Ωc by
FGMRES with the RAS preconditioner. The stopping criteria of FGMRES
on Ωc is 10−1. For the RAS preconditioners on Ωc and Ωf , ILU(0) is applied
to solve the linear system on each subdomain; the size of overlap is 1.

Tables 1-3 show the numerical performance of JD with the one-level and
two-level preconditioners in terms of the number of JD iterations, the average
number of FGMRES for solving the correction equations and the compute
time. Since the imaginary parts of the computed eigenvalues are less than
10−13, we report the real parts only. Consider the compute time and the
average number of FGMRES iterations, the two-level preconditioner is much
better than the one-level preconditioner.

Figures 2 and 3 plot the speedup curves of JD with one-level and two-level
preconditioners. Obviously, JD with both preconditioners are scalable, and
the two-level approach is faster in terms of the total compute time.
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Table 1 The ground state e0 = 0.4162094856604 and Ωc is 56 × 56 × 42.

One-level Two-level
np JD FGMRES Time JD FGMRES Time

5120 4 185.25 42.48 4 38.75 7.48
7168 4 185.25 29.20 4 39.50 6.36

9216 4 186.00 23.23 4 38.75 5.34

10240 4 186.00 22.46 4 39.75 4.84

Table 2 The first excited state e1 = 5.990754117523 and Ωc is 80 × 80 × 60.

One-level Two-level

np JD FGMRES Time JD FGMRES Time

5120 4 251.75 71.10 4 34.75 9.47

7168 4 255.75 47.96 4 34.25 6.20

9216 4 254.50 39.29 4 34.50 5.64
10240 4 256.50 37.37 4 34.00 5.29

Table 3 The second excited state e2 = 0.5990754117522 and Ωc is 80 × 80 × 60.

One-level Two-level

np JD FGMRES Time JD FGMRES Time

5120 4 258.25 71.90 4 34.25 9.99
7168 4 243.25 45.42 4 34.25 6.71

9216 4 258.00 40.99 4 35.50 5.92

10240 4 250.50 35.42 4 34.50 5.44

Table 4 Residual norms of the first six eigenpairs at each Jacobi-Davidson iteration using
10240 processors. The correction equations are preconditioned by the two-level Schwarz

preconditioner. “it” is the index for the JD iteration.

it e0 e1 e2 e3 e4 e5

0 2.590e+ 00 4.249e+ 00 4.249e+ 00 9.430e+ 00 5.457e+ 00 7.339e+ 00
1 7.614e− 02 2.236e− 01 2.233e− 01 3.926e+ 00 5.959e− 01 1.465e+ 00

2 1.911e− 04 3.433e− 04 3.505e− 04 1.211e+ 00 6.696e− 03 8.375e− 02

3 1.640e− 08 3.657e− 08 3.780e− 08 1.418e− 01 1.044e− 06 8.642e− 05
4 1.780e− 12 8.054e− 12 8.216e− 12 3.547e− 04 1.036e− 11 3.270e− 08

5 6.083e− 08 7.659e− 12

6 8.533e− 12
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4 Conclusions

A parallel domain decomposition based Jacobi-Davidson algorithm with three
meshes was introduced and studied for the pyramidal quantum dot simula-
tion. The proposed method requires three meshes; one fine mesh that de-
termines the accuracy of the solution and two coarse meshes to accelerate
the convergence of the inner and outer iterations. Numerical results con-
firmed that our method converges quadratically with the proposed strategy
for computing the initial guess, and also is scalable for problems with over
160 millions unknowns on a parallel computer with over 10,000 processors.
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