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1 Introduction

The electrical activity of the heart is a complex phenomenon strictly related
to its physiology, fiber structure and anatomy.

At the cellular level the cell membrane separates both the intra- and extra-
cellular environments consisting of a dilute aqueous solution of dissolved salts
dissociated into ions. Differences in ion concentrations on opposite sides of
the membrane lead to a voltage called the transmembrane potential, vM , de-
fined as the difference between the intra- and extracellular potentials, (uI and
uE). The bioelectric activity of a cardiac cell is described by the time course
of vM , the so called action potential. At the tissue level the most complete
mathematical model of cardiac electrophysiology is the Bidomain model, con-
sisting of a degenerate reaction-diffusion system of a parabolic and an elliptic
partial differential equation modelling vM and uE of the anisotropic cardiac
tissue, coupled nonlinearly with a membrane model. The multiscale nature of
the Bidomain models yields very high computational costs for its numerical
resolution. The starting point for a spatial discretization is a geometrical rep-
resentation that encompasses the required anatomical and structural details,
and that is also suitable for computational studies. Detailed models were
proposed based on structured grids with cubic Hermite interpolation func-
tions, which enable a smooth representation of ventricular geometry with
relatively few elements, see e.g. Smith et al. [2004]. In this study we used an
alternative approach based on Isogeometric Analysis (IGA), a novel method
for the discretization of partial differential equations introduced in Hughes
et al. [2005]. This method adopts the same spline or Non-Uniform Rational
B-spline (NURBS) basis functions used to design domain geometries in CAD
to construct both trial and test spaces in the discrete variational formulation
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of the differential problem, and provides a higher control on the regularity of
the discrete space. The IGA discretization of the Bidomain model in space
and semi-implicit (IMEX) finite differences in time lead to the resolution at
each time step of a large and very ill-conditioned linear system. Since the iter-
ation matrix is symmetric semidefinite, it is natural to use the preconditioned
conjugate gradient method.

We have developed and analyzed an overlapping additive Schwarz precon-
ditioner for the isogeometric discretization of the cardiac Bidomain model.
We have proved that the resulting solver is scalable and optimal in the ratio
of subdomain/overlap size. Several tests confirm the theoretical bound on
three-dimensional NURBS domains. We note that Isogeometric overlapping
Schwarz preconditioners were first introduced in Beirão da Veiga et al. [2012]
for scalar elliptic problems, while multilevel Schwarz preconditioners for FEM
discretizations of the Bidomain system were studied in Pavarino and Scacchi
[2008].

2 The Bidomain Model

The macroscopic Bidomain representation of cardiac tissue volume is ob-
tained by considering the superposition of two anisotropic continuous media
the intra- (I ) and extra- (E ) cellular media, coexisting at every point of
the tissue and separated by a distributed continuous cellular membrane; see
Pennacchio et al. [2005] for a derivation of the Bidomain model from homog-
enization of cellular model. The cardiac tissue consists of an arrangement of
fibers that rotate counterclockwise from epi- to endocardium, and that have
a laminar organization modeled as a set of muscle sheets running radially
from epi- to endocardium, see LeGrice et al. [1995]. The anisotropy of the
intra- and extracellular media is described by the orthotropic conductivity
tensors DI(x) and DE(x), see e.g. Colli Franzone et al. [2005]. We denote by
Ω the bounded physical region occupied by the cardiac tissue and introduce a
parabolic-elliptic formulation of the Bidomain system. Given an extra-cellular
applied stimulus per unit volume IEapp, we seek the transmembrane and the
extracellular potentials, vM and uE , respectively, and the gating variable w
satisfying the system cm

∂vM
∂t − div(DI∇(vM + uE)) + Iion(vM , w) = 0 on Ω × (0, T )
−div((DI +DE)∇uE)− div(DI∇vM ) = IEapp on Ω × (0, T )

∂w
∂t −R(vM , w) = 0 on Ω × (0, T )

(1)

with insulating boundary conditions, suitable initial conditions on vM , uE
and w, while cm is the membrane capacitance per unit volume. The non-
linear reaction term Iion, the ionic current of the membrane per unit volume,
and the ODE system for the gating variables are given by the chosen ionic
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membrane model. Here we will consider the (LR1) membrane model by Luo
and Rudy [1991]. The system uniquely determines vM , while uE is defined
only up to a same additive time-dependent constant, chosen by imposing∫
Ω
uE dx = 0.

3 Discretization and numerical methods

Isogeometric space discretization. In the three-dimensional case, our do-
main Ω, representing the left ventricle, is modeled by a family of truncated
ellipsoids. According to the isoparametric approach we discretized the Bido-
main system (1) with IGA based on NURBS basis functions, see e.g. Cottrell
et al. [2009]. NURBS functions are built from B-spline functions.
In what follows, let d ≥ 2 be the dimension of the physical domain of interest.
For any α = 1, ..., d, we introduce the open knot vector, a set of non decreas-
ing real numbers Ξα = {0 = ξ1, α, ξ2, α, ..., ξnα+p+1, α = 1}, where p is the
order of the B-spline and nα is the number of basis functions necessary to
describe it. Given the knot vector, it is possible to define univariate B-spline
basis functions, Bpi,α(ξ), and by tensor product the multivariate B-spline ba-
sis functions, Bpi1,...,id . Therefore the tensor product spline space living in the
parametric domain is

V̂ := span{Bpi1...id , iα = 1, ..., nα, 1 ≤ α ≤ d}.

Given ωi1...id the weights associated to Ci1...id , a mesh of control points, we
can define the NURBS basis function on the parametric domain

Rpi1...id(ξ) =
Bpi1...id(ξ)ωi1...id

w(ξ)
,

with w(ξ) :=
∑n1...nd
ii...id

Bpi1...id(ξ)ωi1...id .
Since the single patch domain Ω is a NURBS region, we define a geomet-

rical map F : (0, 1)d → Ω as

F(ξ) =

n1∑
i1=1

...

nd∑
id=1

Rpi1...id(ξ)Ci1...id ,

and the physical space V as the span of the pushforward of the NURBS basis
functions

V := span{Rpi1...id ◦ F
−1, iα = 1, . . . , nα, 1 ≤ α ≤ d}.

A semidiscrete problem of (1) is obtained by applying a standard Galerkin
procedure. We denote by M the mass matrix, by AI,E the symmetric stiffness
matrices associated to the intra- and extra anisotropic conductivity tensors,
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respectively.
Time discretization. The time discretization is performed by a decoupled
semi-implicit method consisting of the two following steps:
- Given vnM , unE and wn at the previous step n, we first solve the ODEs
system for the gating and ionic concentration variables. Since the membrane
model employed is the LR1, the ODE integration approach is based on the
Rush-Larsen method, see Rush and Larsen [1978].
- Once computed wn+1, a semi-implicit scheme is applied to the reaction-
diffusion part, see Ascher et al. [1995], i.e., by using the implicit Euler method
for the diffusion term, while the nonlinear reaction term Iion is treated ex-
plicitly. As a consequence at each time step we need to solve the linear system[

cm
∆tM +AI AI

AI AI +AE

](
vn+1
M

un+1
E

)
=

(
cm
∆tMvnM − iion(vnM ,w

n+1)
IEapp

)
(2)

imposing 1TMuE
n+1 = 0. Due to the ill-conditioning of the iteration ma-

trix and the large number of unknowns required by realistic simulations of
cardiac excitation in three-dimensional domains, a scalable and efficient pre-
conditioner is required.

We recall that the linear system (2) is equivalent to the elliptic variational
problem: given f ∈ L2(Ω),

find u ∈ U such that abido(u, z) = (f, zM ) ∀z = [zM , zE ] ∈ U,

where U := V × Ṽ , with Ṽ := {uE ∈ V :
∫
Ω
uE = 0}, while for the definition

and the properties of the bilinear form abido see Pavarino and Scacchi [2011].

4 Overlapping Schwarz preconditioners

In this section, we construct an isogeometric overlapping additive Schwarz
preconditioner for the Bidomain system, using the general framework devel-
oped in Beirão da Veiga et al. [2012] for a model elliptic problem, and in
Pavarino and Scacchi [2008] for the Bidomain system discretized using FEM.
For α = 1, ..., d, we define a decomposition of the reference interval Î selecting
from the open knot vector Ξα a subset of Nα+1 nonrepeated interface knots
{ξimα ,α,mα = 1, ..., Nα + 1|ξi1,α = 0, ξiNα+1,α = 1}. Thus, the closure of Î

can be decomposed into Nα intervals Îmα,α := (ξimα ,α, ξimα+1,α), assuming
that they have a similar diameter on order H. For each of the interface knots
there exists at least one index smα,α such that 2 ≤ smα,α ≤ nα − 1 and so

that the support of the basis function Bpsmα,α intersects both Îmα−1,α and

Îmα,α.
Let r be an integer counting the basis functions shared by adjacent subdo-
mains. We are able to define Nα subspaces {V̂mα,α}

Nα
mα=1 forming an over-
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lapping decomposition of the B-spline univariate space, V̂ , as

V̂mα,α := span{Bpj,α(ξ)|smα,α − r ≤ j ≤ smα+1,α + r} mα = 1, ..., Nα.

We build the coarse space V̂0,α from the partition of Î. Let

Ξ0,α = {ξ1,α, ..., ξp,α, ξi1,α, ξi2,α, ..., ξiNα−1,α, ξiNα ,α, ξiNα+1,α, ..., ξiNα+p+1,α}

an open knot vector and let {
◦
Bpi,α}

N0,α

i=1 be the corresponding N0,α basis
functions, then the coarse space is

V̂0,α = span{
◦
Bpi,α, i = 1...N0,α}.

In more than one dimension, we proceed by using tensor product. Let N :=∏d
1Nα, for m = 1, ..., N the local and the coarse subspaces are then

V̂m ≡ V̂m1,...,md := span{Bpi1,...,id , smα − r ≤ iα ≤ smα+1 + r, α = 1, ..., d};

V̂0 := span{
◦
Bpi1,...,id , iα = 1...N0,α, α = 1, ..., d}.

The decomposition of the NURBS space V and therefore of U in the physical
domain is trivial:
Um := Vm × Vm and U0 := V0 × Ṽ0 with

Vm≡Vm1,...,md:= span{Rpi1,...,id◦ F
−1, smα− r ≤ iα ≤ smα+1+ r, α = 1, ..., d};

V0 := span{
◦
Rpi1,...,id ◦F−1, iα = 1...N0,α, α = 1, ..., d} and Ṽ0 := V0 ∩ Ṽ .

We are now able to construct a two-level overlapping Additive Schwarz
method for the Bidomain system (2). We remark that U0 ⊂ U , whereas
Um is not a subset of U , m = 1, ..., N . We define therefore the interpolation
operators Im : Um → U as

given u = (vM , uE) ∈ Um, Imu = (Im,Mu, Im,Eu) := (vM , uE −
1

|Ω|

∫
Ω

uE),

whereas I0 : U0 → U is simply the embedding operator. We define the local
projectors operators T̃m : U → Um for m = 0, ..., N by

abido(T̃mu, v) = abido(u, Imv) ∀v ∈ Um.

Defining Tm = ImT̃m, the 2-level Overlapping Additive Schwarz (OAS) op-
erator is then

TOAS := T0 +

N∑
m=1

Tm.
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We have the following result about the convergence rate bound, see Charawi
[2014].

Theorem 1. Under the assumptions that the parametric mesh is quasi-
uniform and the overlap index r is bounded from above by a fixed constant,
the condition number of the preconditioner operator TOAS is bounded by

κ(TOAS) ≤ C
(

1 +
H

δ

)
, (3)

where δ := h(2r+2) is the overlap parameter and C is a constant independent
of h,H,N and δ but not of p and the regularity k.

5 Numerical results

Numerical results presented in this section refer to the 3D Bidomain problem
on a portion of the truncated ellipsoid, representing a simplified ventricular
geometry. The IGA discretization with mesh size h and polynomial degree p
and regularity k is carried out by in MATLAB, using the library GeoPDEs,
De Falco et al. [2011]. The domain is decomposed in N overlapping subdo-
mains of characteristic size H and overlap index r.

Table 1 shows the scalability of the 2-level OAS preconditioner for a 3D
NURBS domain decomposed into an increasing number of subdomains, such
that their size are fixed H

h = 4, p = 3, k = 2 and r = 0, 1. The simulation is
run for 30 time steps, 1.5 ms, and the condition number is estimated using
the usual Lanczos’ method. As expected the 1-level preconditioner (without
coarse problem) has a condition number growing with N , and the perfor-
mances of the 2-level OAS improve when increasing the overlap size. Addi-
tional results, for p = 3, 2 and k = p − 1, are plotted in Fig.1, and confirm
that the condition number, κ, of the 2-level preconditioned problem grows lin-
early with the increasing ratio H

h , as predicted by (3) using minimal overlap
(r = 0).

Finally, Fig. 2 compares the variation of the condition number and iter-
ation count during a complete heartbeat (300 ms) by using 1- and 2-level
OAS solvers or unpreconditioned Conjugate Gradient. These variations are
strictly related to the time step size (∆t), that changes according to the adap-
tive strategy described in Colli Franzone et al. [2005], following the different
phases of a ventricular action potential. In this test the number of the subdo-
mains is 6×6×5 and the ratio H

h = 4. We can note that the depolarization is
the most intense computationally phase, nevertheless OAS solvers keep the
condition number quite uniform for all the duration of the cycle. As expected,
the 2-level greatly improves the conditioning of the problem.
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Table 1 OAS preconditioner in 3D ellipsoidal domain. Scalability test:iteration

counts (it.), condition number κ and extreme eigenvalues (λmax and λmin) as a function
of the number of subdomains N for fixed H/h = 4 for unpreconditioned (Unpc.), 1-level

and 2-level OAS preconditioners. p = 3, k = 2 and r = 0, 1.

Unpc. 1-level OAS 2-level OAS
r=0 r=1

N it. κ it. κ = λmax/λmin it. κ = λmax/λmin it. κ = λmax/λmin

2 × 2 × 1 175 4.98e3 21 65=4.0/6.09e-2 12 11.07=4.74/4.12e-1 6 5.24 = 5.00/0.95
3 × 3 × 2 185 4.44e3 44 331=8.0/2.41e-2 22 32.13=8.60/2.72e-1 9 10.87 = 9.21/0.85

4 × 4 × 3 206 6.32e3 61 627=8.0/1.27e-2 23 31.90=8.63/2.73e-1 8 9.00 = 9.31/1.03
5 × 5 × 4 247 8.89e3 78 1020=8.0/7.84e-3 23 32.09=8.64/2.69e-1 8 10.39 = 9.20/0.89
6 × 6 × 5 297 1.20e4 94 1507=8.0/5.31e-3 23 31.60=8.64/2.27e-1 7 9.16 = 6.95/1.32
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Fig. 2 Complete heart beat. a)-b): Variation of the time step size following the phases
of a ventricular action potential. c)-d): Time course of κ (upper panels) and iteration count

(lower panels) during a heartbeat: comparison between unpreconditioned operator c) and
1- and 2-level OAS d). N = 6 × 6 × 5, H

h
= 4, p = 3, k = 2 and r = 0.
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