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Abstract
In this paper, we study a scalable overlapping domain decomposition

method for solving the 3D unsteady incompressible Navier-Stokes equations
and its application to the simulation of flows passing a full size wind turbine
with realistic geometry and high Reynolds number. The algorithm features
of a fully implicit finite element discretization on a moving unstructured
mesh and a Newton-Krylov-Schwarz solver. We test the algorithm for a flow
around a 5MW wind turbine with more than 8 million degrees of freedom on
a supercomputer with up to 2048 processors.

1 Introduction

Wind power is an increasingly popular renewable energy. In the design pro-
cess of the wind turbine blade, the accurate aerodynamic simulation is impor-
tant. In the past, most of the wind turbine simulations were carried out with
some low fidelity methods, such as the blade element momentum method [9].
Recently, with the rapid development of the supercomputers, high fidelity
simulations based on 3D unsteady Navier-Stokes (N-S) equations become
more popular. For example, Sorensen et al. studied the 3D wind turbine ro-
tor using the Reynolds-Averaged Navier-Stokes (RANS) framework where a
finite volume method and a semi-implicit method are used for the spatial
and temporal discretization, respectively [18]. Bazilevs et al. investigated the
aerodynamic of the NREL 5MW offshore baseline wind turbine rotor us-
ing large eddy simulation built with a deforming-spatial-domain/stabilized
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space-time formulation [3, 10] and later extended the simulation to the full
wind turbine including both the rotor and the tower [11]. Li et al. conducted
dynamic overset CFD simulations for the NREL phase VI wind turbine using
RANS and detached eddy models [15].

In this paper, we study a scalable parallel method based on the 3D un-
steady incompressible N-S equations and its application to a NREL S-series
wind turbine with realistic geometry and Reynolds number. In this simula-
tion, the main challenges are: (1) the moving of the computation domain be-
cause of the rotation of the rotor; (2) the complex geometry; (3) the large com-
putational meshes; and (4) the high nonlinearity resulting from high Reynolds
number. To answer these challenges, an Arbitrary-Lagrange-Eulerian (ALE)
method is used to handle the mesh movement, an unstructured tetrahedron
mesh with a stabilized finite element method and a fully implicit backward
difference scheme are employed to discretize the N-S equations [6, 19] and a
parallel Newton-Krylov-Schwarz (NKS) method [4, 12] is used to solve the
large sparse nonlinear system at each time step. In NKS, an inexact Newton
method with analytic Jacobian is employed as the nonlinear solver, a Krylov
subspace method is used as the linear Jacobian system solver in the Newton
steps, and an overlapping domain decomposition method is used as a pre-
conditioner to accelerate the convergence of the linear solver [5, 14]. For the
rotor-only simulation, one can either fix the computation domain and apply
a given velocity on the surface of the rotor, or let the domain move with the
rotating rotor and apply a no-slip boundary condition on the rotor surface.
We choose the latter one in this paper. We mainly focus on the solution
method, including the robustness and parallel scalability.

The rest of the paper is organized as follows. In Section 2, we briefly
introduce the governing equations and their discretization. In Section 3, the
Newton-Krylov-Schwarz algorithm is discussed, and some numerical results
are presented in Section 4. In Section 5, we draw some conclusions.

2 Governing equations and a fully implicit discretization

We model the flow around the wind turbine using the 3D unsteady incom-
pressible N-S equations. Since the computational domain moves during the
simulation, a moving mesh method is introduced to handle the change of
the flow domain. In this paper, we use the ALE method. Let Y be the ALE
coordinate, X the Eulerian coordinate. Then the N-S equations read as [7]:
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ρ

(
∂u
∂t

∣∣∣∣
Y

+ (u− ω) · ∇u
)

+∇ · σ = f in Ωt,

∇ · u = 0 in Ωt,
u = g on Γinlet

σ · n = 0 on Γoutlet,
u = 0 on Γwall,
u = u0 in Ωt at t = 0,

(1)

where Ωt is the computational domain at time t and ω = ∂x
∂t is the velocity

of the rotating flow domain which is equal to the rotor speed since we let the
whole computation domain rotate with the rotor. σ = −pI+µ(∇u+ (∇u)T )
is the Cauchy stress tensor. u and p are the velocity and pressure of the flow.
ρ and µ are the density and viscosity of the fluid, respectively. f refers to the
source term and g is a given function defined at the inlet boundary. u0 is a
given initial condition which is zero in our test cases. Γinlet, Γoutlet and Γwall
refer to the inlet, outlet and wall boundaries, respectively.

A P1− P1 finite element method is used to discretize (1) on an unstruc-
tured tetrahedral mesh T h = {K}. Since this finite element method is not
stable for the N-S equations because it does not satisfy the Ladyzenskaja-
Babuska-Brezzi (LBB) condition, additional stabilization terms are needed
in the formulation as described in [2]. We denote the finite element spaces of
the trial and weighting functions for the velocity and pressure as Uh, U0,h,
and Ph, respectively. Then the semi-discrete stabilized finite element formu-
lation of (1) is given as follows: Find uh ∈ Uh and ph ∈ Ph, such that for
any Φh ∈ U0,h and ψh ∈ Ph,

Bh(uh, ph;Φh, ψh)− Fh(Φh, ψh) = 0, (2)

where uh, ph are the nodal values of the velocity and pressure functions, ϕh

and each of the three components of Φh are the basis functions which are
piecewise continuous linear functions, and

Bh(uh, ph;Φh, ψh) = ρ

∫
Ωt

∂uh

∂t

∣∣∣∣
Y

· ΦhdΩt + µ

∫
Ωt

∇uh : ∇ΦhdΩt

+ρ
∫
Ωt

((uh − ω) · ∇)uh · ΦhdΩt −
∫
Ωt

ph∇ · ΦhdΩt

+
∫
Ωt

(∇ · uh)ϕhdΩt +
∑
K∈T

(
∇ · uh, τc∇ · Φh

)
K

+
∑
K∈T

(
∂uh

∂t

∣∣∣∣
Y

+ ((uh − ω) · ∇)uh +∇ph, τm(uh · ∇Φh +∇ϕh)
)
K

,

Fh(Φh, ψh) =
∫
Ωt

f · ΦhdΩt +
∑
K∈T

(
f , τm(uh · ∇Φh +∇ϕh)

)
K
.
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Here the parameters τc and τm are defined as in [2].
For the temporal discretization, we use an implicit backward finite differ-

ence formula with a fixed time step size ∆t. In the implicit method, one needs
to solve a nonlinear system at each time step (the nth time step):

Fn(Un) = 0, (3)

to obtain the solution of the nth time step Un, which consists of the nodal
values of the velocity and pressure.

3 Monolithic Newton-Krylov-Schwarz algorithm

In most N-S solvers, such as the projection methods, the operator is split into
the velocity component and pressure component, and the algorithm takes
the form of a nonlinear Gauss-Seidel iteration with two large blocks. In the
monolithic approach that we consider in this paper, the velocity and pressure
variables associated with a grid point stay together throughout the compu-
tation. In this approach, the two critically important ingredients, namely the
monolithic Schwarz preconditioner, and the robustness and scalability are
realized with the point-block ILU based subdomain solver.

The nonlinear system (3) is solved by a Newton-Krylov-Schwarz method
which reads as

• Let U0 be the given initial condition and set n = 0
• For n = 1, 2, · · · , do

• Using an initial guess Un
0 = Un−1 and set k = 0

• Move the computational domain (Ωn−1 → Ωn) and the mesh T nh
(the coordinate of each mesh point at the current time step xn

is obtained by rotating the initial mesh x0):

xn =

 cos(ωn∆t) −sin(ωn∆t) 0
sin(ωn∆t) cos(ωn∆t) 0

0 0 1

x0

• For k = 1, 2, · · · , until converges, do
• Find dnk such that

‖ ∇Fn(Un
k−1)(Mn

k )−1(Mn
kd

n
k ) + Fn(Un

k−1) ‖≤ η ‖ Fn(Un
k−1) ‖ (4)

• Set Un
k = Un

k−1 + τnk dnk
• Set Un = Un

k

Here (Mn
k )−1 is an additive Schwarz preconditioner to be defined shortly,

ω is the angular speed of the rotor, and η is the relative tolerance for the
linear solver. Not that, in the wind turbine simulation, we simply let the
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whole computational domain rotate at the same angular speed as the rotor,
so the current mesh can be obtained by rotating the initial mesh and the
connectivity of the mesh does not change. For simplicity, we ignore the scripts
n and k for the rest of the paper.

In NKS, the most difficult and time-consuming step is the solution of the
large, sparse, and nonsymmetric Jacobian system (4) by a preconditioned
GMRES method. In the Jacobian solver, the most important component is
the preconditioner, without which GMRES doesn’t converge or converges
very slowly, and a good preconditioner accelerates the convergence signifi-
cantly. In this paper, we use an overlapping restricted additive Schwarz pre-
conditioner introduced in [5]:

MRAS =
np∑
l=1

(R0
l )
TJ−1

l Rδl , (5)

where Jl is the local Jacobian matrix defined on the overlapping subdomain,
np is the number of subdomains, Rδl and R0

l are the restriction operators
from the whole domain to the overlapping and non-overlapping subdomain,
respectively. In practice, we only need the application of J−1

l to a given
vector, which can be obtained by solving a subdomain linear system. Since
J−1
l is used as a preconditioner here, the subdomain linear system can be

solved exactly or approximately by using LU factorization or incomplete LU
factorization (ILU) in the point-block format [17].

4 Numerical experiments

In this section, we report some numerical experiments using the proposed al-
gorithm. Our solver is implemented on top of the Portable Extensible Toolkit
for Scientific computation (PETSc) [1]. The computations are carried out on
the Dawning Nebulae supercomputer at the China National Supercomputer
Center at Shenzhen. The geometry of the wind turbine is provided by Grab-
CAD1 (we scale the size to that of a 5MW wind turbine) and meshed by AN-
SYS; see Figure 1 for details. The mesh partitions for the additive Schwarz
preconditioner are obtained with ParMETIS [13]. The relative stopping con-
ditions for the nonlinear and linear solvers are 10−12 and 10−6, respectively.

In the experiments, we set the wind speed to be uniform at 15m/s and
the rotor speed to be 22rpm (revolutions per minute). For the air flow, we
set the kinematic viscosity µ = 1.831 × 10−5kg/(ms) and the density ρ =
1.185kg/m3. Figure 2 shows the simulation results: the velocity distribution
and the isosurface of the flow at t = 10.0s, which are obtained on a mesh
with about 1.1× 107 elements and a fixed time step size ∆t = 0.01s.

1 www.grabcad.com
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63m 300m

600m

Fig. 1 A three-blade wind turbine with NREL S807 root region airfoil and NREL S806

tip region airfoil from GrabCAD (left), the computational domain (mid), and the compu-

tational mesh (right).

Fig. 2 The velocity distribution (left) and the isosurface (right) of the simulation

The parallel performance results are given in Table 1 for two different sub-
domain solvers ILU(2) and ILU(3) (here 2 and 3 refer to the fill-in levels of the
point-block ILU factorization). With the increase of the number of processors
(np) from 512 to 2048, the number of Newton iterations (Newton) changes a
little, the number of GMRES iterations (GMRES) increases reasonably, and
the compute time (Time) decreases. These results show that the algorithm
scales well when np is around 1024 or less and the efficiency reduces with the
increase of np, which is reasonable because we use a one-level method. The
result also suggests that for large number of processors, in order to obtain a
good scalability, multilevel methods are necessary.

5 Concluding remarks

A domain decomposition based fully implicit parallel algorithm for the nu-
merical simulation of the flow around a wind turbine rotor was introduced and
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Table 1 Parallel performance of the algorithm. Here the degrees of freedom (DOF) is

about 8.4 × 106 and the overlapping size is 4. The “Time” refers to the average compute
time in seconds at each time step.

np
ILU(3) ILU(2)

Newton GMRES Time(s) Newton GMRES Time(s)

512 3.0 51.72 127.3 3.0 64.02 75.0

1024 3.0 52.77 77.7 3.0 66.40 45.8

1536 3.1 53.94 67.5 3.0 67.60 35.6
2048 3.0 57.42 53.0 3.0 67.75 29.3

studied in this paper. The algorithm begins with a fully implicit discretization
of the unsteady incompressible N-S equations on a moving unstructured mesh
with a stabilized finite element method, then an inexact Newton method is
employed to solve the large nonlinear system at each time step, and a precon-
ditioned GMRES method is employed to solve the linear Jacobian system in
each Newton step with a one-level restricted additive Schwarz preconditioner.
We tested the algorithm for a flow around a 5MW wind turbine with more
than 8 million degrees of freedom on a supercomputer with up to 2048 pro-
cessors. The algorithm scales well when the number of processors is around
1024 or less. We plan to develop a multilevel version of the algorithm in order
to obtain better scalability results when the number of processors is larger.
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