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1 Introduction

This article focuses on the research field of laminar flow of an ideal gas, on the
resolution of aerodynamic multi-scale problems that are costly and difficult to solve
in their original form. In order to solve these large data systems several techniques
of parallel computing have been developed but some convergence problems may
occur for large number of sub-domains.

Robust and fast methods are now available, which combine non-linear and lin-
ear solvers requiring less memory capacity. In the context of long term simulations,
global implicit approaches have proven their superiority as they are able to simulate
a quasi-steady-state behaviour without being restricted to short time steps to ensure
convergence. Implementing these approaches on GPUs can certainly improve the
efficiency versus a simple CPU implementation, as will be shown below, but by
combining this implementation with domain decomposition another scale of effi-
ciency could be achieved. In this paper, we propose an improved parallel time-space
method for steady/unsteady problems modelled by Euler and Navier-Stokes equa-
tions for a direct numerical simulation.

Domain decomposition methods split large problems into smaller sub-problems
that can be solved in parallel. Usually, only space domain decomposition method
is used to provide high-performing algorithms in many fields of numerical appli-
cations. To achieve full performance on large clusters with up to 100 000 nodes
(such as recently the IBM Sequoia, or GPUs) the time dimension has to be taken
into account. An essential gain to be obtained from time-space domain decomposi-
tion is the ability to apply different time-space discretisation on sub-domains thus
improving efficiency and convergence of implicit schemes.
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In practice, we are often working with large computational domains where only
a small part is highly interactive and a wide region of the domain is close to equi-
librium state. What is usually done is that the sub-domains are balanced in space so
that each processor finishes the simulation at the same moment and the computation
is done, on each sub-domain with the same time step, the global one. The time step
depends on the CFL condition, the value of the flow velocity and the space step. This
means that the part of the simulation domain which is not dominated by strong non-
linearities is solved with a much higher precision than is needed. Some sub-domains
are over-solved. The sub-domain close to the equilibrium state converges in fewer
iterations and it is less costly, but it has to wait for the high reactive sub-domain to
end in order to continue the simulation. To avoid this loss of efficiency and optimize
the computational cost, the time step should be computed locally and the distribu-
tion of flow in sub-domains should take into consideration several factors: closeness
to equilibrium region, strong non-linearities region and time step influence.

Our work focuses on the improvement of the Schwarz waveform relaxation
(SWR) Method introduced under this name by Gander [1998] at the 10th Do-
main Decomposition Conference to solve parabolic equations. It was previously
presented by Gander and Stuart [1998] as a multi-splitting formulation on overlap-
ping sub-domains (Jeltsch and Pohl [1995]) combined with a waveform relaxation
algorithm (Lelarasmee et al. [1982]) in space-time for the heat equation. The pur-
pose is to solve the space-time partial differential equation in each sub-domain in
parallel, and to transmit domain boundary information to the neighbours at the end
of the time interval. Originally applied to linear PDEs, the SWR algorithm was ex-
tended and optimised to the non-linear reactive transport equations by Haeberlein
[2011], Haeberlein and Halpern [2012]. With the SWR method different time-space
discretisation can be applied on sub-domains thus improving efficiency and conver-
gence of the schemes.

2 Navier–Stokes Solvers

The Navier–Stokes equations are given by three conservation laws.

• Mass conservation:
∂ρ

∂ t
+∇.(ρu) = 0

• Momentum conservation:
∂ρu
∂ t

+∇.(u⊗ (ρu))+∇.pI−∇.τ = 0

• Energy conservation:
∂ρE
∂ t

+∇.(u(ρE + p))−∇.(τu−q) = 0

where ρ,u,E,τ,q are, respectively density, velocity, energy, viscous tensor and heat
flux. Three algorithms are presented. They are all based on the same time discreti-
sation (second order implicit Backward Differentiation Formula), the non-linear
problem is solved with the Newton method and linear problems are solved directly
((L+D)D−1(D+U) factorisation). The first method is a classical non-linear domain
decomposition method (Keyes [2002], Knoll and Keyes [2004]) which consists in
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semi-discretising uniformly in time the system, in applying a global Newton lin-
earisation, then dividing the linear system in several local overlapping subsystems
that we can solve in parallel. This algorithm is referred to as the Newton-Schwarz
algorithm.

Newton-Schwarz Algorithm: • Semi-discretisation in time
• Linearisation (Newton)
• Space Schwarz DDM
◦ Solve the local linear system

In some cases, one Schwarz iteration is sufficient to achieve convergence of Newton
to the solution of the problem.Space decomposition and linearisation are indepen-
dent. The next idea is to first do the decomposition and then solve in each sub-
domain the non-linear system. This algorithm is the same as the one introduced by
Cai and Keyes [2002], but using a different linear solver.

Schwarz-Newton Algorithm: • Semi-discretisation in time
• Space Schwarz DDM
◦ Solve the local non-linear system

To achieve full speed-up performance, a SWR method is used, as it allows local
space and time stepping. The whole time interval of study is split into sub-intervals
or time windows, then space is decomposed into sub-domains. For each time win-
dow the space-time Navier-Stokes equations are solved in each sub-domain in par-
allel. Boundary conditions are transmitted at the end of the time window.

SWR Algorithm: • Schwarz DDM over time windows
• For each sub-domain:
◦ Semi-discretisation in time
◦ Solve the local non-linear system

SWR uses time windowing techniques that doesn’t degrade the solution and ex-
changes less information between processors. After each iteration we proceed to the
improvement of the interface condition in each sub-domain. This can lead to a com-
pletely different time step to satisfy either a stability criteria (for explicit schemes)
or an accuracy bound , both based on the CFL number , thus the necessity to locally
recompute the time step which is an improvement of the classical SWR algorithm.
In this paper we propose, within the SWR iterative process, an adaptive time step-
ping technique to improve the scheme consistency, thus different time steps in each
sub-domain and inside each time window. In the following we shall test the scala-
bility of these three algorithms.

3 Numerical results

Space discretisation is achieved with finite volumes on cartesian non-conforming
grids. The Euler fluxes are computed using the MUSCL-Hancock (Monotone Up-
stream centred Scheme for Conservative Laws) second order scheme combined with
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the AUSM+-UP (Advection Upstream Splitting Method) scheme. The advantage of
the AUSM+-UP developed by Liou [2006] is that it was conceived to be uniformly
valid for all speed regimes. The viscous fluxes are computed with a second order
Finite Difference scheme. First, we solve the global domain for a simple configura-
tion on CPU and we compare the results with those found using exactly the same
second order algorithm, but on GPUs. Then, performances of the different parallel
computing strategies (using OpenMP, MPI) are compared on the inviscid and vis-
cous motion of a 2D isolated vortex in an uniform free-stream based on Yee et al.
[1999] and on the case of the mixing layer. The sub-domains overlap region has the
stencil size. We use a second order projection method to exchange data in time and
in space. All implicit algorithms are second order in time and space.

3.1 GPU versus CPU for Euler Equations

First, these algorithms can be accelerated using GPUs. GPUs are used to solve a
global problem or a local one using a massive parallel architecture. We start by solv-
ing the global problem on a GPU (NVidia Corporation GF110 [Geforce GTX 580]
Compute Capability 2.0) with CUDA (CUDA) launched from a CPU and compare
its computational cost with one running on a CPU (7.8 GB, 2 Cores at 3.33GHz)
with OpenMP. The computational domain is a rectangular one with an imposed in-
flow velocity at each time step. On table 1 is shown the ratio of the computation

Table 1 CPU-OPENMP time cost / CPU-GPU time cost
Grid Size Time Step 2D Fluxes Update Step Bnd Update Total
130x130 43.08 1.63 8.62 0.31 3.72
260x260 109.26 1.71 15.90 1.58 4.65
525x525 164.83 2.81 40.37 1.38 6.88
1050x1050 392.72 2.58 321.21 2.39 7.80

on a CPU with OpenMP with the computation on CPU-GPU. As can be seen there
is a definite gain to be obtained on the CPU-GPU configuration with one domain,
and the greater the number of points the better is the ratio. GPU code is portable
on any NVidia GPUs using CUDA programming model, though, it should be noted
that performances on GPUs vary a great deal depending on the GPU specifications.

3.2 2D Isentropic Vortex for Euler Equations

We present results on a convective vortex with (u∞,v∞) = (1,1) for a perfect gas:
γ = 1.4, p

ργ = 1. The computational domain is [−5.,5.]× [−5.,5.]. The initial con-
dition equals the mean flow field plus an isentropic vortex with no perturbation in
entropy. We use periodic boundary conditions and Dirichlet transmission conditions.
This test is interesting as the isentropic vortex is an exact solution of the Euler equa-
tions. At the end of each cycle that lasts 10s the vortex equals the initial solution.

ρ = (T∞ +δT )
1

γ−1 = (1− (γ−1)β 2

8γπ
e1−(x2+y2))

1
γ−1
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ρu = ρ(u∞ +δu) = ρ(1− β

2π
e

1−(x2+y2)
2 )

ρv = ρ(v∞ +δv) = ρ(1+ β

2π
e

1−(x2+y2)
2 )

p = ργ

e = p
γ−1 +

1
2 ρ(u2 + v2)

3.2.1 Accuracy study

Let us begin with an accuracy study of the Euler equations computing L2 and L∞

slopes of errors in the case of non adaptive time steps. First, let us fix the number
of sub-domains to 2× 2 and a common time step. We increase the global number
of space cells from 40x40 cells to 60x60 cells and 80x80 cells (the time step varies
in the same ratio as the space step) We consider that we have converged when we
reach an error less than a tolerance equal to 1.e− 6 for both Newton and Schwarz
stopping criteria.
As can be seen in Fig.1, all presented methods
are second order in time and close to second or-
der in space, depending on the Van Albada limiter
chosen in MUSCL scheme. Velocity, pressure and
energy errors behave similarly for all presented
methods. The method denoted as Newton in Fig.1
is the Newton-Schwarz method using only one
Schwarz iteration, it only has order one accuracy
showing that Schwarz is a good preconditioner for
our scheme. Fig. 1 L2 error over density field

3.2.2 Computational cost

To evaluate the cost (machine independant), a good indicator is the number of local
linear solves, given by the product between the number of Newton iterations and the
number of Schwarz iterations. This cost is a linear function of the number of cells.
On table 2 are shown the average number of local linear solves per time step for
the Newton-Schwarz (NS) method, the Schwarz-Newton (SN) method and for the
SWR-Newton (SWR) method for an increasing number of sub-domains with a fixed
number of size cells in each sub-domain (weak scalability). The sub-domain size is
fixed to 20×20 points and the cfl number has the value 0.5. For the SWR-Newton
scheme, we choose δ t the same time step on each sub-domain and ∆T = 5δ t the
time window. The Newton stopping tolerance is set to 1e−6. The Schwarz conver-
gence tolerance is varying as shown on Table 2. This table shows the good weak
scalability of all considered methods. Moreover, it proves that a tolerance of 1e-2 in
the Schwarz stopping criteria decreases the number of linear solves without affect-
ing the precision of the non-linear system. Thus, we can conclude that there is no
need to achieve convergence in Schwarz. The SWR method is competitive with the
Newton-Schwarz, but two times less efficient than the Schwarz-Newton scheme.
On Table 2, in order to compute one time window the 4 processors communicate
in average over all time windows 18.6 times (average number of Schwarz itera-
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Table 2 Weak scaling of the schemes. Computational costs
Schwarz tol = 1.e-6 Schwarz tol= 1.e-3 Schwarz tol = 1.e-2

Scheme Iterations\Sub-domains 4 9 16 4 9 16 4 9 16
NS Newton iterations 8.48 8.11 6.94 8.48 8.11 6.93 8.48 8.11 9.29
NS Schwarz iterations 5.89 6.28 6.41 5.26 5.70 5.78 4.71 5.00 5.66
NS Linear Solvers 50.00 51.02 44.51 44.64 46.33 40.15 39.89 40.63 52.62
SN Newton iterations 3.07 2.72 2.28 5.00 4.18 3.28 5.93 4.90 5.31
SN Schwarz iterations 7.09 7.49 7.15 3.55 4.0 4.0 2.46 3.0 3.0
SN Linear Solvers 21.79 20.40 16.31 17.78 16.75 13.15 14.63 14.72 15.93
SWR Newton iterations 7.54 6.62 5.41 7.52 6.61 5.37 7.49 6.56 7.13
SWR Schwarz iterations 18.6 14.28 19.25 7.08 7.98 7.44 4.36 4.77 5.66
SWR Linear Solvers 140.6 95.3 104.28 53.28 52.78 39.99 32.75 31.43 40.40

tions per window) when a SWR-Newton scheme is chosen. In order to reach the
same time window the Schwarz-Newton scheme communicates in average 35.45
times (Schwarz iterations × window size) and the Newton-Schwarz scheme com-
municates in average 250 times (Newton iterations × Schwarz iterations × window
size). The SWR method is thus ideal for clusters with high latencies. Note: It should
be mentioned that higher order coupling conditions like unsteady Robin type con-
ditions can improve the efficiency of the algorithm and should positively influence
the number of Schwarz iterates (cf Haeberlein and Halpern [2012]).

The adaptive time step SWR method converges to the solution in exactly the
same way as the fixed time step SWR method. The gain of the SWR method comes
from the improved stability of the scheme since the time step is recomputed at each
iteration thus less communication between the sub-domains as it appears that when
the coupling conditions are improved, larger times steps are usually needed. This
also leads to less CPU memory when fewer coupling conditions need to be stored.

3.3 Sound generation in a 2D low-Reynolds mixing layer

The second case presented here if the case of a 2D low-Reynolds mixing layer
where a high precision scheme is required. It is studied especially focusing on the
acoustic waves emitted by the vortex pairings in a perturbed mixing layer. The flow
configuration is the same as the one proposed by Colonius et al. [1997] consist-
ing in a slightly perturbed hyperbolic tangential shape velocity profile, u = ū +
0.125 tanh(2y), with ū=(u∞+u−∞)/2 and u∞ = 0.5, u−∞ = 0.25, and ρ∞ = ρ−∞ = 1
and p∞ = p−∞ = 1/γ , respectively, with γ = 1.4. We fix the Reynolds number at 250
and add a sponge layer as shown in Fig.2 to absorb the flow. This is a particularly
sensitive case in acoustics and phenomena are quite different within each subdo-
main. The results presented on Table 3 are for simulations between t = 200s and
t = 250s, interval inside which all sub-domains are interacting. The initial solution
was computed with an explicit second order Runge-Kutta method. We have fixed
the stopping criterion in the Newton algorithm to a tolerance of 1.e−4 and the stop-
ping criterion of the Schwarz decomposition to a tolerance of 1.e−2 (cf. 3.2) which
gives a good solution. The time window inside the SWR methods equal 5 times the
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Fig. 2 Mixing Layer acoustic pressure field. Initial condition (left) and computational domain with
sponge layer (right)

smallest global time step and the global domain was divided in 22 sub-domains :
18 sub-domains of equal size 107×21 cells in the middle region and 4 sponge sub-
domains with 107×41 in the sponge area. The number of linear solves is no longer
a good measure since sub-domains with different size have been computed and we
adapt the time step after each iteration for SWR and for all time steps in SWRA the
adaptive SWR. On Table 3 we vary the time window length and show only the total
computational time cost for all three methods. For low CFL (less than 2) SWR is

Table 3 Global computational costs for ∆T = 5δ t, Schwarz tol = 1.e-2 and Newton tol=1.e-4

Scheme \cfl 0.5 1 2 5 10
NS 333.56 167.65 116.45 24.20 18.79
SN 129.97 76.07 89.41 26.76 10.45
SWR 189.13 189.65 121.77 21.90 5.87
SWRA 189.82 191.08 121.54 21.86 5.12

less efficient than SN. For higher CFL, SWR becomes the most efficient, the SWR
with adaptive step becoming the leader in terms of performance.

Fig. 3 Mixing layer acoustic pressure field (top) and vorticity (bottom)

Results obtained with the time adaptive SWR scheme (see Fig.3) compare well
with those obtained with an explicit third order Runge Kutta Discontinuous Garlekin
solver developed by Halpern et al. [2012].
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4 Conclusion and Remarks
A variation on the non-linear SWR algorithm has been developed using an adap-
tive time stepping approach to simulate 2D multi-scale Euler and Navier-Stokes
problems. The above results show that the method has the ability to treat large data
systems without loss of parallel efficiency. This SWR algorithm has similar com-
putational efficiency as the original SWR and adds a new flexibility to the SWR
method. There are at least three ways to improve the SWR technique. One is to op-
timize the time space interface condition, another is to implement the pipeline SWR
iterations as presented by Ong et al. [2013] and of course the use of GPUs that can
considerably improve the efficiency.
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