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1 Introduction

Domain Decomposition methods provide a flexible tool for developing multi-
physics simulations and coupling different discretization methods. In general,
multi-physics simulations will require the handling of non-matching grids.
Domain Decomposition methods like the Mortar method [3] enable us to
simulate complex applications like contact problems, mechanics of moving
parts, or heterogeneous coupling like surface-/groundwater flow.

As we will discuss, coupling unrelated parallel meshes poses significant
practical problems. To our knowledge only very few implementations exist:
both the well-known MpCCI library [7] and the SIERRA framework imple-
ment a parallel rendezvous algorithm [8] based on intersection algorithms,
but neither of them is publicly available. An alternative approach can be
based on radial basis functions, see [5].

The Dune framework [1] offers different strategies for Domain Decom-
position methods, which are available as Dune extensions. One approach is
to construct individual meshes for each sub-domain and relate them after-
wards, the alternative is to create one mesh for the whole domain and define
sub-domain meshes as appropriate sub-meshes. In this paper we only discuss
the first approach. In [6] Gander and Japhet describe a new algorithm that
improves the complexity of matching unrelated meshes from O(n2) to O(n),
where n is the number of coupling elements. This algorithm is implemented
in the Dune Grid-Glue [2] library. We discuss extensions of this library for
handling distributed meshes.

When using methods like Dirichlet-Neumann coupling in the parallel con-
text the user is forced to manage distributed data, as the necessary coupling
information is not available locally. We present an abstraction that hides this
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non-locality and allows the user to implement his Domain Decomposition
strategy in a clear mathematical setting. By introducing two auxiliary Finite
Element spaces on the coupling interface we can reformulate the original do-
main decomposition algorithm and hide all parallel data handling from the
user. In a proof of concept we implement these auxiliary spaces for the Dune
PDELab library, where they are created in a completely automatic fashion.

2 Relating unrelated Meshes

In the following we only describe a non-overlapping scenario, although the
presented techniques are applicable to more general settings.

We consider a domain Ω ⊂ Rd. Ω is partitioned into two sub-domains
Ω0 and Ω1 which meet at an interface Γ . The domains are triangulated into
meshes T0 and T1 which are independent and in general do not match at the
interface. Each mesh describes a set of entities, e.g. cells, faces, etc. We select
a subset of entities which covers the interface Γ , i.e. the patches P0, P1; on
these we impose the coupling conditions.

In order to relate information on Ω0 and Ω1 one has to transfer data like
approximate solutions and evaluations of local residuals. We follow a mesh
intersection approach, requiring us to compute the intersections of all entities
in P0 with those in P1 (see Figure 1). Based on the algorithm presented in [6]
we identify pairs of overlapping entities from both sides, for which we then
compute entity clippings, yielding a set of polyhedral intersections.

This algorithm is available as Dune::GridGlue::Merger within Dune
Grid-Glue; it is provided as a native implementation and as an inter-
face to legacy codes. Using a predicate mi the coupling patches are de-
fined as Pi = {γ|γ ∈ Ti ∩ ∂Ωi ∧ mi(γ)}. The computed intersections are
modelled as the intersections in the Dune grid interface and exposed as
Dune::GridGlue::Intersection, which provides topological and geometri-
cal information. In the sequential case it gives access to the adjacent cells
in the two grids T0 and T1. To compute coupling conditions, intersections
provide a mapping from local coordinates to global coordinates as well as
mappings to the local coordinate systems of the adjacent cells (see Figure 2).

: ∩ =

T0(Ω0), T1(Ω1) Pi ⊂ Ti ∪Ωi I

Fig. 1 Intersecting the coupling patches P0 and P1 yields a set I of intersections, which
can be used to evaluate the coupling conditions.
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Fig. 2 Left: Intersections relate adjacent cells of unrelated grids. Right: Geometric map-

pings provided by an intersection.

2.1 Coupling via intersections

As a short example, let us consider a two-domain Poisson problem with
Dirichlet-Neumann coupling condition: Find u0 and u1 such that

−∆ui = 0 on Ωi, i ∈ 0, 1

ui = g at ∂Ωi \ Γ, i ∈ 0, 1

u0 = u1 at Γ

∇u1 · n = ∇u0 · n at Γ .

(1)

We follow the usual approach and introduce discrete trial and test spaces
V0, V1 on Ω0 and Ω1. In the simplest case this might be a conforming La-
grange discretization. Testing with functions vi ∈ Vi and integration by parts
yields the problem in its weak formulation. On Ω0 we impose Dirichlet bound-
ary conditions along Γ , whereas Neumann boundary conditions are imposed
along Γ on Ω1. As the interface Γ is in general non-conforming, we can em-
ploy a Clément interpolation to interpolate the solution u1 onto Ω0. For given
bases Φ0, Φ1, we obtain a system matrix of the following form, where C0 and
C1 correspond to Dirchlet and Neumann coupling blocks:(

A0 C0

C1 A1

)
·
(
u0
u1

)
=

(
b0
b1

)
(2)

The matrix entries in the off-diagonal blocks are given by

Ci,j0 = −〈∇φi0n, φ
j
1〉Γ , Ci,j1 = −ωφj0〈φ

i
1, φ

j
0〉Γ ,

with ωφj0
= 1/〈1, φj0〉Γ the weights of the Clément operator and φi∗ ∈ Φ∗.

A straightforward approach to solving this problem iteratively is a fix point
iteration on the split problem. In order to better illustrate the differences to
the following parallel setting, we sketch this iteration in Algorithm 1.
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Algorithm 1 Classic Dirichlet-Neumann iteration

u0, u1 = initial

while ! converged do
u0 ← A−1

0 (b0 − Cσu1)

u1 ← A−1
1 (b1 − Cσu0)

end while

Algorithm 2 Parallel grid matching algorithm
parallel GridGlue

P . P : # of parallel processes

T (Ω0), T (Ω1) . Sub domain meshes
m0,m1 . Predicates for Ω1 and Ω2

process Π [p ∈ {0, ..., P − 1}]
P0 = {γ|γ ∈ T0|p ∩ ∂Ω0 ∧m0(γ)} . Local coupling patches
P1 = {γ|γ ∈ T1|p ∩ ∂Ω1 ∧m1(γ)}
Ip ← merge(P0,P1) . Set of intersection

(P̂0, P̂1)← (P0,P1)
for i ∈ [0, P − 2) do

asend: (P̂0, P̂1) −→ (p+ 1)%P . send to right neighbor

arecv: (P̂0, P̂1) −→ (p− 1 + P )%P . receive from left neighbor
Ip ← Ip ∪merge(P̂0,P1) . merge remote patches

Ip ← Ip ∪merge(P0, P̂1) . . . with local patches

end for
end process

end parallel

2.2 Concepts of Parallel Mesh Coupling

Based on the previously introduced local grid matching algorithm we derive
a parallel grid matching algorithm, see Algorithm 2. We extract the local
part of the coupling patches P0, P1, merge these and communicate the data
in a ring. We retrieve the neighboring patches and intersect them with our
local patches. This yields the set of all intersections of local entities, either
in Ω0 or Ω1, with any other entity, including remote entities. This provides
all topological and geometric information required to evaluate the coupling
conditions, but in general, as illustrated in Figure 3, we lack access to the
data in the adjacent domain. We therefore assign a globally unique ID to
each intersection to provide parallel communication on the interfaces. This
communication is built upon the parallel IndexSets [4] of Dune and allows
a gather/scatter mechanism to send and receive data across domain inter-
section patches. In analogy to the parallel communication in the Dune grid
interface, the user has to provide a DataHandle object which implements
the gather and scatter operations. The communicated data depends on the
chosen Domain Decomposition method, thus the user is usually required to
implement the data communication himself. For high level frameworks this a
very unsatisfactory situation.
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For methods like Mortar or FETI-DP the problems are less immanent
as we have no direct coupling along the sub-domain faces. These methods
introduce additional degrees of freedom on the interface, the sub-domains
couple only to the interface and then the arising Schur-Complement system
for the interface is solved.

Other methods like classic non-overlapping Schwarz methods or Dirichlet-
Neumann coupling directly couple the sub-domains and require explicit com-
munication of remote data. The main difference is that in the latter case we
cannot fully represent the local part of the Poincaré-Steklov operator on a
single processor, but only the local contributions.

3 Hiding Parallel Communication using Auxiliary
Spaces

We now describe a mathematical abstraction which allows implementations
to hide all communications from the user. We introduce additional function
spaces Vλ and Vσ on the coupling interface Γ , see Figure 4. The definition of
these function spaces is general; they can thus be constructed automatically
as

Vλ =
{
v ∈ L2(Γ )

∣∣∣ v|γ ∈ Pk(γ), γ ∈ I, k = order(V0)
}
⊇ tr(V0)

Vσ =
{
v ∈ L2(Γ )

∣∣∣ v|γ ∈ Pk(γ), γ ∈ I, k = order(V1)
}
⊇ tr(V1) ,

−→

Fig. 3 When coupling distributed grids, neighboring cells of the remote mesh might not
be accessible locally, making it impossible to evaluate coupling conditions. (Numbers in

circles denote the process rank)

1

1

Fig. 4 Through the use of auxiliary spaces on the coupling interface Γ , direct access to

non-local cells of the neighboring domain is avoided. (Numbers in circles denote the process
rank)
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Algorithm 3 Auxiliary space iterative algorithm

u0, u1 = initial

while ! converged do
σ ← Dσu1 . implicit data communication

u0 ← A−1
0 (b0 − Cσσ) . parallel solver on Ω0

λ ← Dλu0 . implicit data communication
u1 ← A−1

1 (b1 − Cσλ) . parallel solver on Ω1

end while

where Pk denotes the space of polynomial functions up to degree k. Vλ and
Vσ are defined as discontinuous polynomial spaces on the interface, where Vλ
is the minimal DG space containing the trace spaces of V0 and Vσ for V1,
respectively. For efficiency we choose L2 orthonormal bases. Note that for
order(V0) = order(V1) it follows that Vλ = Vσ. The arising structure of the
global system is as follows, although it is never assembled as a whole:

A0 0 Cσ 0
−Dλ Mλ 0 0

0 0 Mσ −Dσ

0 Cλ 0 A1

 ·

u0
λ
σ
u1

 =


b0
0
0
b1

 ,

where Mλ, Mσ denote the mass matrices of Vλ, Vσ and Cλ, Dλ, Cσ, Dσ are
coupling operators.

The auxiliary spaces Vλ and Vσ eliminate the direct coupling between A0

and A1. We split the original coupling operator C1 to obtain the pair Cλ,
Dλ and proceed analogously for C0. As we have chosen L2 orthonormal basis
functions for Vλ and Vσ, the mass matrices reduce to the identity 1. There-
fore the coupling operators can be evaluated on the fly in an efficient fash-
ion. All computations are completely local and can be handled by a generic
gather/scatter implementation. The relation between C1 and Cλ, Dλ becomes
obvious when eliminating λ or σ, respectively. We use M∗ = 1 and obtain
the classical coupled system as in (2)(

A0 CσDσ

CλDλ A1

)
·
(
u0
u1

)
=

(
b0
b1

)
In analogy to Algorithm 1, we can solve the coupled parallel system using

Algorithm 3. As we recover the original DD method, it is also possible to use
it as a preconditioner in existing Krylov methods.

3.1 Implementation in DUNE PDELab

When implementing the Poisson example from Section 2.1 with the auxil-
iary spaces approach, Dune PDELab transparently synthesizes the aux-
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iliary spaces Vλ and Vσ and represents the overall solution space V =
V0 × V1 × Vλ × Vσ as a tree of elementary function spaces (cf. Figure 5).
Given a weak problem of the form u ∈ U : a(u, v) = b(v) ∀ v ∈ V , Dune
PDELab splits the (bi)linear forms into sums of entity-local contributions
αe, αs and αb for cells, interior facets and boundary facets, respectively, iso-
lating the user from mesh and DOF handling. a(u, v) thus reads

a(u, v) =
∑
e∈Eh

REe (αv, u, v) +
∑
f∈F (i)

h

RFf (αs, u, v) +
∑

f∈F (b)
h

RBb (αb, u, v). (3)

RE , RF and RB map the global spaces U and V to the element-local restric-
tions on the cells adjacent to the current entity, leaving the user with the
task of implementing the local contributions αe, αs and αb.

The coupling operators Dλ, Cλ, Dσ and Cσ resemble the interior facet
terms in that they involve restricted function spaces with different supports,
but differ in that the restrictions do not belong to the same global space.
Those terms consequently require an extension of eq. (3) with additional
coupling terms on the interface Γ and the two sub-domains.
Dλ and Dσ form projection operators onto Vλ and Vσ, whereas Cλ and

Cσ mimic the operators C0 and C1. The first one behaves like a source on
the interface, whereas the second one is a direct adoption of the Clément
operator. Given local bases Φγ∗ on γ (with V∗|γ = span(Φγ∗)) the user has to
implement the following local contributions to the global stiffness matrix:

α0,λ
γ (Φγ0 , Φ

γ
λ) =

∑
φλ∈Φγλ
φ0∈Φγ0

−〈∇φ0n, φλ〉γ , αλ,1γ (Φγλ, Φ
γ
1) =

∑
φ1∈Φγ1
φλ∈Φγλ

〈φλ, φ1〉γ ,

α1,σ
γ (Φγ1 , Φ

γ
σ) =

∑
φσ∈Φγσ
φ1∈Φγ1

−〈φ1, φσ〉γ , ασ,0γ (Φγσ, Φ
γ
0) =

∑
φ0∈Φγ0
φσ∈Φγσ

−ωφ0〈φσ, φ0〉γ ,

which correspond to Dλ, Cλ, Dσ and Cσ, respectively.

4 Conclusions

The Dune Grid-Glue library offers software infrastructure for the coupling
of unrelated grids. We presented recent extensions to Dune Grid-Glue to

generated

V1 = P1(Ω1)Vσ VλV0 = P1(Ω0)

V (Ω) (CouplingGFS)
Fig. 5 Sketch of the hierarchic construction

of the global function space for a coupled
problem. Dune PDELab automatically gen-
erated the spaces Vλ and Vσ .
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work in the context of distributed meshes. Reconstructed geometrical and
topological relations between the grids are encapsulated as intersection ob-
jects. Although presented for non-overlapping intersections, the parallel im-
plementation also handles overlapping and mixed-dimensional setups.

The coupling of distributed grids usually requires substantial changes to
the user code and explicit use of parallel communication. We discussed a con-
cept to reformulate the numerical scheme using auxiliary spaces on the cou-
pling interface Γ , which allows the implementation of domain decomposition
methods in a common framework that can hide the parallel communication
from the user. This reformulated coupling problem integrates nicely with the
hierarchic function space and operator concepts available in Dune PDELab.

The presented parallel mesh matching is available in the current version
of the Dune Grid-Glue library. A prototype implementation for Dune
PDELab is available, a more general implementation is under development.
The code is available under an open source license from the Dune website
http://dune-project.org/.
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