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1 Introduction

Understanding failure processes of heterogeneous materials is an active re-
search field in computational mechanics. The failure analysis of quasi-brittle
materials such as concrete is a topic of particular interest in civil engineering.
Failure in quasi-brittle materials is characterized by the initial formation of
cracks at a microscopic level followed by their coalescence into macroscopic
cracks leading to weakening and fracture. Because the fracturing process of
these materials occurs at different length scales, care must be taken to provide
an accurate description which accounts for all the relevant mechanical pro-
cesses while maintaining acceptable computation costs. With this in mind, we
propose a multiscale approach capable of switching between different spatial
discretizations and material representations depending on the local mechan-
ical behaviour.

In this contribution, we present a non-local damage finite element analysis
of a wedge-split test used to evaluate fracture properties in concrete-like ma-
terials. We apply the classical FETI framework (Farhat and Roux [1991]) to
a non-linear gradient-enhanced damage (GD) model (Peerlings et al. [1996])
using both iterative and direct solvers to the interface problem as well as us-
ing a direct solver for the entire set of equations of the fully dual assembled
system.
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2 Framework

2.1 Gradient-enhanced damage model

The gradient-enhanced damage model by Peerlings et al. [1996] is employed
to model concrete failure. The GD model is non-local: it consists of a coupled
set of differential equations involving the modified Helmholtz equation for the
non-local equivalent strain and the classical quasistatic equilibrium equations.
Damage evolution is highly non-linear, requiring the use of a loop control
dividing the total load into small steps with an iterative Newton-Raphson
(NR) scheme for each step to assure equilibrium.

The damage parameter ω, which modifies the stress–strain relation ac-
cording to

σ = (1− ω)De : ε , (1)

varies from 0 for undamaged to 1 for fully damaged material. Its evolution,

ω (κ) =

{

0 κ ≤ κ0

1− κ0

κ

(

1− α
(

1− e−β(κ−κ0)
))

κ > κ0

, (2)

is a function of the history parameter κ which is defined as the maximum
value ever attained by the nonlocal equivalent strain. In the above equations,
D

e is the elasticity fourth-order tensor, σ is the second-order stress tensor, ε
is the second order strain tensor, κ0, α and β are parameters governing the
shape of the damage evolution law.

The underlying damage formalism results in an asymmetric stiffness ma-
trix. To solve the set of equations, a solver supporting asymmetry, both in
direct and iterative approaches, is required.

2.2 Multiscale domain decomposition

The key to solving the discrete system of equations in a reasonable amount
of time is to use two different representations of the problem under examina-
tion. One numerical model has a fine mesh with a detailed representation of
the mesostructure of the material. The other numerical model has a coarse
mesh with homogenized material properties which have been determined to
approximate the response of the ’fine’ model in the linear regime. Both nu-
merical models have been decomposed into a fixed amount of domains. Each
domain in the ’fine’ model has a corresponding domain in the ’coarse’ model
matching its shape.

The calculation starts with the ’coarse’ numerical model for all domains.
In each step and for each domain, a check for the condition of onset of
non-linearity is performed. For every node, the non-local equivalent strain
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difference is calculated from the displacement field of the current and two
previous steps. Onset of non-linearity occurs if for a single node the strain
difference exceeds a chosen damage initiation threshold value κ0. The do-
mains for which this condition is met are subsequently replaced by domains
with the fine scale mesh. To preserve continuity of the displacements and
forces, a boundary value problem is solved for each replaced domain followed
by a global relaxation step.

Computing the strain difference for the onset of the non-linearity condition
is a choice that should match the nature of the formation of non-linearities.
For tensile test calculations and the gradient-enhanced damage model, our
current choice yields satisfactory results (Lloberas-Valls et al. [2012a]).

2.3 Classical FETI method

In order to solve the multiscale system with a mixture of coarse and fine
meshes for each domain, the classical FETI method (Farhat and Roux [1991])
is used. Lagrange multipliers ensure continuity of the solution field between
interface nodes of adjacent domains. Linear multipoint constraints and full-
collocation are used for fine mesh interface nodes which do not have a cor-
responding coarse mesh node on the adjoining domain (Lloberas-Valls et al.
[2012b]).

Boundary conditions are also included by means of Lagrange multipliers,
thus implying that all domains in this framework are floating. This method
is known as the Total-FETI method (Dostál et al. [2006]). Rigid body mo-
tion vectors are constructed to enforce compatibility between domains. To
solve the local equations for each domain, we use QR factorization of the
domain stiffness matrix which can be stored for later use in computing the
Lagrange multipliers by means of either the iterative or direct solve of the
global interface problem as shown in Lloberas-Valls et al. [2011, 2012a].

3 Numerical computation

3.1 Model

We use a two-dimensional model of a wedge split specimen for the quasistatic
damage simulation of the heterogeneous sample of concrete shown in Fig. 1.

For the multiscale framework we use two different meshes: a homogeneous
mesh consisting of quadrilateral elements with four integration points for the
coarse domains, and a heterogeneous mesh with triangular elements and one
integration point for fine scale domains. Both meshes are shown in Fig. 2. The
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Fig. 1 Dimensions and domain decomposition of the wedge split model test. The interface
is represented in dark-grey.

Fig. 2 Coarse (left) and fine (right) scale domain meshes. Coloring in the fine domain:
aggregates in black, cement matrix in grey and ITZ in lightgrey.

fine-scale mesh is representative of a typical concrete mesostructure which
consists of spherical aggregates, an interface transition zone (ITZ) surround-
ing the aggregates, and a cementitious matrix material in which the aggre-
gates are embedded. Because of the independence of the individual domains,
we are not restricted in mesh, element and material choice per domain pro-
vided that the solution field is continuous across the interface.

The parameters are listed in Table 1. Plane strain conditions are consid-
ered. The Young’s modulus for the homogeneous coarse-scale mesh is an effec-
tive Young’s modulus derived from the heterogeneous mesh. This is necessary
for an accurate material-averaged linear response in the coarse description of
the model.

3.2 Software framework and solvers

The non-linear quasistatic calculation is performed by dividing the total ap-
plied displacement into 200 load increments. In each load increment the non-
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Table 1 Material data

Material Parameters Aggregates Matrix ITZ

E Young’s Modulus [GPa] 35.0 30.0 20.0
ν Poisson’s ratio [-] 0.2 0.2 0.2
εeq Non-local equivalent strain [-] Mazars Mazars Mazars
κ0 Damage Initiation Threshold [-] dummy 8.5× 10−5 5× 10−5

c Gradient parameter [mm2] 0.75 0.75 0.75
ω (κ) Damage evolution law [-] Exponential Exponential Exponential
α Residual stress parameter [-] 0.999 0.999 0.999
β Softening rate parameter [-] 150 150 150

linear GD model is evaluated iteratively using an NR scheme with a conver-
gence threshold of 1.0× 10−6 for the relative error in energy. Usually 3-4 NR
iterations are sufficient for the solution to converge.

In the FETI calculations, all factorizations of the domain stiffness matrices
are being performed by SuiteSparseQR (Davis [2011]). Solving the flexibility
problem iteratively requires projection to ensure positive semi-definiteness
of the matrix, allowing the iterative solvers to converge. Because of the
asymmetry of the flexibility matrix, only few iterative solvers like BiCGStab
by van der Vorst [1992] and GMRES by Saad and Schultz [1986] are suitable.
We chose BiCGStab with projection using openMP for the product of the
projected stiffness matrix and solution vector (Eqs. (9–12) in Lloberas-Valls
et al. [2011]).

Superlumped (SL), lumped (L) and Dirichlet (D) type preconditioners
from Rixen and Farhat [1999] are used to accelerate iterative convergence, as
well as the multiplicity (m), stiffness (k) and Dirichlet (s) scaling to augment
the preconditioners.

The flexibility interface problem can also be solved directly, using openMP
for evaluating the flexibility matrix by distributing the domain contributions
to the sum over all available parallel cores, followed by a dense matrix solver
such as UMFPACK (Davis [2004]). Even though this approach was discour-
aged in Farhat and Roux [1991] because of the large amounts of solutions
required, we have performed this direct calculation since it does provide an
upper time limit for finding the Lagrange multipliers with an iterative ap-
proach.

An alternative approach is the solution of the set of equations from which
the FETI method originates:

[

K B
T

B 0

] [

u

λ

]

=

[

f

0

]

. (3)

Because of the reduction in degrees of freedom, obtained by starting with
all coarse domains and a simplified model description, and only substituting
domains with fine, heterogeneous counterparts where it is needed, the full
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dual assembled matrix is much smaller than the full numerical solution (FNS)
and can be solved using parallel direct solvers.

In this contribution we have selected a couple of solvers with the require-
ment of being able to handle asymmetric cases: MUMPS by Amestoy et al.
[2001, 2006], Pardiso by Schenk et al. [2001], PaSiX by Hénon et al. [2002],
WSMP by Gupta [2006] and SuperLU by Li [2005], Li et al. [1999], Demmel
et al. [1999]. These solvers can also be applied to obtain the FNS.

Fig. 3 Comparison of final damage profile of FNS (right) and FETI-direct 34 Domain

4 Results

The full numerical solution and the 34 domain FETI-direct calculations show
identical damage patterns and displacements as shown in Fig. 3. However,
none of the iterative FETI calculations, regardless of preconditioner and
scaling combination, succeed in completing the calculation within the 1000
BiCGStab iteration limit.

Figure 4 shows a significant rise in BiCGStab iterations as the damage
calculation progresses. This indicates the inability of the iterative precondi-
tioners and scalings to deal with progressive damage evolution, possibly due
to large differences in material stiffness. In order to ascertain this assumption
we study the number of iterations for one linear elastic calculation with a do-
main decomposed mesh, consisting of the 26 zoomed-in domains, by choosing
three different load increments i and their corresponding damage profiles ωi

from the FETI-direct calculation and substituting the Young’s modulus E by
(1−ωi)E. This approach enables us to observe the dependency of the damage
evolution versus the number of iterative steps needed for convergence.

From Table 2 we confirm that the iterations strongly depend on the dam-
age profile: the iterations increase dramatically upon progressively growing
differences in material stiffness. This is caused by the differences of orders of
magnitudes in the matrix entries. We therefore conclude that the standard
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Fig. 4 BiCGStab iteration trend per NR-iteration number. Refer to Subsection 3.2 for an
explanation of used preconditioner and scaling acronyms.

Table 2 Linear elastic BiCGStab iteration count as a function of damage profile for a
given load increment. Two different preconditioner/scaling results are shown.

load increment
preconditoner + scaling 0 100 final

dirichlet + k scaling 16 233 1936
lumped + k scaling 39 781 > 5000

preconditioners and scalings fail to accelerate the BiCGStab iterative solver
in situations of substantial damage.

Improving the preconditioners for these type of systems involves adapting
new techniques in combination with the damage model, for instance using
eigenvalue analysis in FETI-GenEO (Spillane and Rixen [2013]). This is a
challenging research topic because of the asymmetric nature of the stiffness
matrix in the GD model.

If we instead turn our attention to the parallel direct solvers for both the
FNS and full assembly of the FETI system, we see a favourable reduction
of time and used memory of the full assembly compared to the FNS for
all solvers (Fig. 5). The reduction is not very large, as was expected since
the used model system shows an extensive damage pattern affecting 75% of
the domains. We are confident that for larger 3D model systems undergoing
damage the amount of zoomed in domains will be much smaller and therefore
more economic in terms of computation time.
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Fig. 5 Comparison of parallel direct solvers. Solid symbols denote FNS, outlined symbols
denote multiscale DD.

5 Conclusions

The multiscale framework proposed by Lloberas-Valls et al. [2012a] in com-
bination with a classic FETI approach is shown to provide a reduction of
degrees of freedom necessary to efficiently simulate damage evolution in mul-
tiscale models of concrete-like materials. By using parallel direct solvers the
calculation can be done in less time and memory than the FNS.

In the iterative FETI approach, a high iteration count of the iterative
solver is caused by the large differences in material stiffness along domain
interface boundaries because of damage evolution. This poses a challenge for
existing preconditioners and scalings. We nevertheless expect the iterative
FETI to become the most efficient algorithm for very large problems once
suitable preconditioners have been identified.
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