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1 Introduction

Using the time direction in evolution problems for parallelization is an active field
of research. Most of these methods are iterative, see for example the parareal algo-
rithm analyzed in [3], a variant that became known under the name PFASST [10],
and waveform relaxation methods based on domain decomposition [5, 4], see also
[1] for a method called RIDC. Direct time parallel solvers are much more rare, see
for example [2]. We present here a mathematical analysis of adifferent direct time
parallel solver, proposed in [9]. We consider as our model partial differential equa-
tion (PDE) the heat equation on a rectangular domainΩ ,

∂u

∂ t
−∆u= f in Ω × (0,T), u= g on ∂Ω , andu(·,0) = u0 in Ω . (1)

Using a Backward Euler discretization on the time mesh 0= t0 < t1 < t2 < · · ·< tN =
T, kn = tn− tn−1, and a finite difference approximation∆h of ∆ over a rectangular
grid of sizeJ = J1J2, we obtain the discrete problem

1
kn
(un−un−1)−∆hun = fn. (2)

Let It be theN×N identity matrix associated with the time domain andIx be the
J× J identity matrix associated with the spatial domain. Setting u := (u1, . . . ,uN),
f := (f1+ 1

k1
u0, f2, . . . , fN) and using the Kronecker symbol, (2) becomes
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(B⊗ Ix− It ⊗∆h)u = f, B :=




1
k1

− 1
k2

1
k2

0

0
. . .

. . .
− 1

kN

1
kN



. (3)

If B is diagonalizable,B= SDS−1, then (3) can be solved in 3 steps:

(a) (S⊗ Ix)g = f,
(b) ( 1

kn
−∆h)wn = gn, 1≤ n≤ N,

(c) (S−1⊗ Ix)u = w.

(4)

TheN equations in space in step (b) can now be solved in parallel. This interesting
idea comes from [9], but its application requires some care:first, B is only diago-
nalizable if the time steps are all different, and this leadsto a larger discretization
error compared to using equidistant time steps, as we will see. Second, the condi-
tion number ofS increases exponentially withN, which leads to inaccurate results
in step(a) and(c) because of roundoff error. We accurately estimate these twoer-
rors, and then determine for a user tolerance the maximumN and optimal time step
sequence of the formkn+1 = qn−1kn, which guarantees that errors stay below the
user tolerance.

2 Error estimate for variable time-steps

We start by studying fora> 0 the ordinary differential equation (ODE)

du
dt

+au= 0, t ∈ (0,T), u(0) = u0 =⇒ u(t) = u0e−aT. (5)

For Backward Euler,un = (1+akn)
−1un−1 with time steps from the divisionT =

(k1, . . . ,kN) satisfyingT = ∑N
1 kn, we define the error propagator by

Err(T ;a,T,N) :=
N

∏
n=1

(1+akn)
−1−e−aT, (6)

such that the error at timeT equalsErr(T ;a,T,N)u0. We also define the equidistant
divisionT := (k, . . . ,k), wherek= T/N.

Theorem 1 (Equidistant Partition Minimizes Error). For any a,T and N, and
any divisionT , the error propagator is positive, and for the equidistant division
T , the error is globally minimized.

Proof. Rewriting Err(T ;a,T,N) =
N
∏

n=1
(1+akn)

−1−
N
∏

n=1
(eakn)−1, we see that the

error propagator is positive, since for all positivex, ex > 1+ x. To minimize the
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error, we thus have to minimizeΦ(T ) :=
N
∏

n=1
(1+akn)

−1 as a function ofT ∈R
N,

with N inequality constraintskn ≥ 0, and one equality constraint∑N
n=1kn = T. We

compute the derivatives

∂Φ
∂ki

(T ) =−
a

1+aki
Φ(T ),

∂ 2Φ
∂kik j

(T ) =
(1+ δi j )a2

(1+aki)(1+akj)
Φ(T ),

and to show thatΦ is convex, we evaluate for an arbitrary vectorx = (x1, . . . ,xN)

N

∑
i, j=1

∂ 2Φ
∂kik j

(T )xix j =
(
∑
i 6= j

a2

(1+aki)(1+akj)
xix j +∑

i

a2

(1+aki)2 x2
i

)
Φ(T )

=
(( N

∑
i=1

axi

1+aki

)2
+

N

∑
i=1

( axi

1+aki

)2
)

Φ(T )> 0.

Therefore the Kuhn Tucker theorem applies, and the only minimum is given by the
existence of a Lagrange multiplierp with Φ ′(T )+ p1= 0, 1 the vector of all ones,
whose only solution isT = T , p= a(1+ak)−N−1.

We now consider a divisionTq of geometric time stepskn := qn−1k1 for n =
1, . . . ,N as it was suggested in [8]. The constraint∑N

n=1kn = ∑N
n=1qn−1k1 = T fixes

k1, and using this we get

kn =
qn

∑N
j=1q j

T. (7)

Since according to Theorem 1 the error is minimized forq = 1, one should not
chooseq very different from 1, and we now study the caseq= 1+ε asymptotically.

Theorem 2 (Asymptotic truncation error estimate). Let uN(q) := Φ(Tq)u0 be
the approximate solution obtained with the divisionTq for q = 1+ ε. Then, for
fixed a,T and N, the difference between the geometric mesh and fixed step mesh
approximations satisfies forε small

uN(q)−uN(1) = α(aT,N)u0ε2+o(ε2), with

α(x,N) =
N(N2−1)

24

(
x/N

1+ x/N

)2

(1+ x/N)−N.
(8)

Proof. Using a second order Taylor expansion, we obtain in the following two lem-
mas an expansion ofΦ(T1+ε) for smallε.

Lemma 1. The time step kn in (7) has forε small the expansion kn = k(1+αnε +
βnε2+o(ε2)), with αn = n− N+1

2 andβn = n(n−N−2)+ (N+1)(N+5)
6 . These coef-

ficients satisfy the relations∑n αn = ∑n βn = 0, ∑n α2
n = N(N−1)(N+1)

12 .

Lemma 2. For ε small, we have the expansion



4 Martin J. Gander, Laurence Halpern, Juliet Ryan, Thuy Thi Bich Tran

N

∏
n=1

(1+akn) = (1+ak)N(1−
b2

2

N

∑
n=1

α2
nε2+o(ε2)),with b= ak

1+ak
.

We can now apply Lemma 2 to obtainΦ(T1+ε) = Φ(T1)(1+
b2

2
∑N

n=1α2
nε2 +

o(ε2)), and replacingΦ in the definition ofuN concludes the proof.

3 Error estimate for the diagonalization of B

The matrixB is diagonalizable if and only if all time stepsk j are different. The
eigenvalues are then1kn

, and the eigenvectors form a basis ofR
N. We will see be-

low that the matrix of eigenvectors is lower triangular. It can be chosen with unit
diagonal, in which case it belongs to a special class of Toeplitz matrices:

Definition 1. A unipotent lower triangular Toeplitz matrix of sizeN is of the form

T(x1, . . . ,xN−1) =




1

x1
. . .

...
. . .

. . .
xN−1 . . . x1 1



. (9)

Theorem 3 (Eigendecomposition ofB). If kn = qn−1k1 as in (7), then B has the
eigendecomposition B= VDV−1, with D := diag( 1

kn
), and V and its inverse are

unipotent lower triangular Toeplitz matrices given by

V = T(p1, . . . , pN−1), with pn :=
1

∏n
j=1(1−q j)

, (10)

V−1 = T(q1, . . . ,qN−1), with qn := (−1)nq(
n
2)pn. (11)

Proof. Let v(n) be the eigenvector with eigenvalue1kn
. SinceB is a lower bidiagonal

matrix, a simple recursive argument shows thatv(n)j = 0 for j < n. One may choose

v(n)n = 1, which implies that forj > n we havev(n)j = (∏n− j
i=1 (1−

kn+i
kn

))−1, and the

matrix V = (v(1), . . . ,v(N)) is lower triangular with unit diagonal. Furthermore, if

kn = qn−1k1, we obtain forj = 1,2, . . . ,N−n thatv(n)n+ j = (∏ j
i=1(1−qi))−1 which

is independent ofn and thus proves the Toeplitz structure in (10).
Consider now the inverse ofV. First, it is easy to see that it is also unipotent

Toeplitz. To establish (11) is equivalent to prove that

for 1≤ n≤ N−1,
n

∑
j=0

pn− jq j = 0, with the convention thatp0 = q0 = 1. (12)
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This result can be obtained using theq−analogue of the binomial formula, see [7]:

Theorem 4 (Simplifiedq−binomial theorem). For any q> 0, q 6= 1, and for any
n∈ N,

n

∑
j=0

(−1) jq
j( j−1)

2
(1−qn− j+1) · · · (1−qn)

(1−q) · · ·(1−q j)
= 0. (13)

Multiplying (13) by pn then leads to (12).

In the steps (a) and (c) of the direct time parallel solver (4), the condition num-
ber of the eigenvector matrixS has a strong influence on the accuracy of the re-
sults. Normalizing the eigenvectors with respect to theℓ2 norm, S := VD̃, with
D̃ = diag( 1√

1+∑N−n
i=1 |pi |2

), leads to an asymptotically better condition number:

Theorem 5 (Asymptotic condition number estimate).For q= 1+ ε, we have

cond∞(V) ∼
(
(N−1)!εN−1)−2

, (14)

cond∞(S) ∼
N

φ(N)
ε−(N−1), φ(N) =

{
N
2 !(N

2 −1)! if N is even,

(N−1
2 !)2 if N is odd.

(15)

Proof. Note first that|qn| ∼ |pn| ∼ (n! εn)−1. Therefore

‖V‖∞ = 1+ |p1|+ |p2|+ · · ·+ |pN−1| ∼ |pN−1| ∼
(
(N−1)!εN−1)−1

.

The same holds forV−1, and gives the first result. We next defineγn :=
√

1+∑N−n
j=1 |p j |2,

d̃n := 1
γn

, which impliesD̃ = diag(d̃n). Thenγn ∼ |pN−n|, and we obtain

‖S‖∞ = sup
n

n

∑
j=1

|pn− j |

γ j
∼ sup

n

n

∑
j=1

|pn− j |

|pN−n|
∼ sup

n

n

∑
j=1

(N− j)!
(n− j)!

εN−n ∼ N.

By definitionS−1= D̃−1V−1 = D̃−1T(q1, · · · ,qN−1), that is the linenof T(q1, · · · ,qN−1)
is multiplied byγn. Therefore

‖S−1‖∞ = supn γn ∑n−1
j=0 |q j | ∼ supn γn|qn−1| ∼ supn γn|pn−1| ∼ supn |pN−n||pn−1|

∼ ε−(N−1) supn
1

(n−1)!(N−n)! ∼
1

φ(N)ε−(N−1).

4 Relative error estimates for ODEs and PDEs

We first give an error estimate for the ODE (5):

Theorem 6 (Asymptotic roundoff error estimate for ODEs). Let u be the exact
solution of Bu = f, and û be the computed solution from the direct time parallel
solver (4) applied to (5), and udenote the machine precision. Then
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‖u− û‖∞

‖u‖∞
. u

N2(2N+1)(N+aT)
φ(N)

ε−(N−1). (16)

Proof. In the ODE case,D = diag( 1
ki
+a) and‖D‖∞ = 1/k1+a. Using backward

error analysis [6], the computed solution satisfies the perturbed systems

(S+ δS1)ĝ= f, (D+ δD)ŵ = ĝ, (S−1+ δS2)û = ŵ,

and sinceSandS−1 are triangular andD is diagonal we get (see [6])

‖δS1‖ ≤ Nu‖S‖+O(u2), ‖δS2‖ ≤ Nu‖S−1‖+O(u2), ‖δD‖ ≤ u‖D‖+O(u2).

Using algorithm (4) to solveBu = f by decomposition is equivalent to solving(S+
δS1)(D+ δD)(S−1+ δS2) û = f, which is of the form

(B+ δB)û = f, ‖δB‖ ≤ (2N+1)u‖S‖‖S−1‖‖D‖+O(u2).

The relative error then satisfies (see [6])

‖u− û‖
‖u‖

≤ cond(B)
‖δB‖
‖B‖

≤ (2N+1)u ‖B−1‖‖S‖‖S−1‖‖D‖.

By a direct computation, we obtain for the inverse ofB

B−1 = k1




1
1 q

1
... q2

...
...

...
. . .

1 q q2 . . . qN−1



,

and hence‖B−1‖∞ = k1(1+ q+ . . .qN−1) ∼ Nk1. Sincek1 ∼ k = T/N, (16) is
proved.

The error of the direct time parallel solver at timeT can be estimated by

|e−aTu0− ûN|

|u0|
≤

|e−aTu0−uN(1)|
|u0|

+
|uN(1)−uN(q)|

|u0|
+

|uN(q)− ûN|

|u0|
. (17)

The first term on the right is the truncation error of the sequential method using
equal time steps. The second term is due to the geometric meshand was estimated
asymptotically in Theorem 2 to beαε2. The last term can be estimated by‖u(q)−
û‖∞/|u0| and thus Theorem 6, sincea> 0 which implies|u0|= ‖u‖∞. Because the
second term is decreasing inε and the last term is growing inε, we equilibrate them
asymptotically:

Theorem 7 (Optimized geometric time mesh).Suppose the time steps are geomet-
ric, kn = qn−1k1, and q= 1+ ε with ε small. Let ube the machine precision. For
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Fig. 1 Optimized choiceε0(aT,N) from Theorem 7 (left). Ratio of the additional errors due to
parallelization to the truncation error of the fixed step method (17) with this choice ofε0(aT,N)
(right)

ε = ε0(aT,N) with

ε0(aT,N) =

(
u

N2(2N+1)(N+aT)
φ(N)α(aT,N)

) 1
N+1

, (18)

whereα(aT,N) is defined in (8) andφ(N) in (15, the error due to time paralleliza-
tion is asymptotically comparable to the one produced by thegeometric mesh.

Proof. This is a direct consequence of Theorem 6.

We show in Figure 1 on the left the optimized valueε0(aT,N) from Theorem 7.
Choosingε = ε0(aT,N), the ratio between the additional errors due to paralleliza-
tion to the truncation error of the fixed time step method is shown in Figure 1 on the
right.

In order to obtain a PDE error estimate for the heat equation (1), one can argue as
follows: expanding the solution in eigenfunctions of the Laplacian, we can apply our
results for the ODE witha= λℓ, λℓ for ℓ = 1,2, . . . the eigenvalues of the negative
Laplacian. One can show for allN≥ 1 and machine precisionu small enough (single
precision suffices in practice) that our error estimate (17)has its maximum foraT <
a∗T = 2.5129, and thus ifλmin andT are such thatλminT > a∗T , one can read off
the optimal choiceε0 and resulting error estimate in Figure 1 ataT = λminT for a
given number of processorsN. Similarly, if we haveN processors and do not want
to increase the error compared to a sequential computation by more than a given
factor, we can read in Figure 1 on the right the size of the timewindow T to use
(knowinga= λmin), and the corresponding optimizedε0 on the left.
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Fig. 2 Discretization and parallelization errors, and conditionnumber of the eigenvector matrix,
together with our theoretical bounds, left for the ODE, right for the PDE

5 Numerical Experiments

We first perform a numerical experiment for the scalar model problem (5) with
a= 1,T = 1 andN= 10. We show in Figure 2 on the left how the discretization error
increases and the parallelization error decreases as a function of ε, together with
our theoretical estimates, and also the condition number ofthe eigenvector matrix,
and our theoretical bound. We can see that the theoreticallypredicted optimizedε
marked by a rhombus is a good estimate, and on the safe side, ofthe optimal choice
a bit to the left, where the dashed lines meet.

We next show an experiment for the heat equation in two dimensions on the unit
square, with homogeneous Dirichlet boundary conditions and an initial condition
u0(x,y) = sin(πx)sin(πy). We discretize with a standard five point finite difference
method in space with mesh sizeh1 = h2 =

1
10, and a Backward Euler discretization

in time on the time interval(0, 1
5) usingN = 30 time steps. In Figure 2 on the right

we show again the measured discretization and parallelization errors compared to
our theoretical bounds. As one can see from the graph, in thisexample, one could
solve the problem using 30 processors, and would obtain an error which is within a
factor two of the sequential computation.
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