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1 Introduction

Using the time direction in evolution problems for parafiation is an active field
of research. Most of these methods are iterative, see fongbegthe parareal algo-
rithm analyzed in [3], a variant that became known under gnmaen PFASST [10],
and waveform relaxation methods based on domain decorigroft 4], see also
[1] for a method called RIDC. Direct time parallel solverg anuch more rare, see
for example [2]. We present here a mathematical analysisdifferent direct time
parallel solver, proposed in [9]. We consider as our modglgalifferential equa-
tion (PDE) the heat equation on a rectangular dondain

Jdu

E—Au: finQx(0,T), u=gondQ, andu(-,0)=upin Q. (1)
Using a Backward Euler discretization on the time mesht<t; <t, <--- <ty =
T, ky =th —t,_1, and a finite difference approximatidy, of A over a rectangular
grid of sized = J;J,, we obtain the discrete problem

1 n n—-1 n n

—(u"—u —Apu" =11 2
kn( ) —4n (2
Let I be theN x N identity matrix associated with the time domain dgpdbe the
J x J identity matrix associated with the spatial domain. Sgttin= (u?,...,uV),
fi=(f1+ k—lluo,fz, ...,fN) and using the Kronecker symbol, (2) becomes
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0

BRlx—hk@AM)u=Ff  B:= 02 2 _ 3)
11
kn Ky

If Bis diagonalizableB = SDS%, then (3) can be solved in 3 steps:

(a) (S®lxg=",
() (E—dpw"=g", 1<n<N, 4)
() (Stelu=w.

TheN equations in space in step (b) can now be solved in paralhs.ifteresting
idea comes from [9], but its application requires some dans; B is only diago-
nalizable if the time steps are all different, and this letda larger discretization
error compared to using equidistant time steps, as we wall Second, the condi-
tion number ofSincreases exponentially with, which leads to inaccurate results
in step(a) and(c) because of roundoff error. We accurately estimate thesetwo
rors, and then determine for a user tolerance the maxifdwand optimal time step
sequence of the fork, .1 = q" 'k, which guarantees that errors stay below the
user tolerance.

2 Error estimate for variable time-steps

We start by studying foa > 0 the ordinary differential equation (ODE)

d
W au=0, te(0,T), u0) =t =— u(t)=uee

at (5)

For Backward Eulen), = (1+ akn)*lun,l with time steps from the divisiol’ =
(ki,...,kn) satisfyingT = Z'Il kn, we define the error propagator by
N

Err(7;a,T,N):= |_|(1+akn)’l—e’aT, (6)
n=1

such thatthe error attimeequalsrr (7;a,T, N)u®. We also define the equidistant
division 7 := (k,...,k), wherek=T/N.

Theorem 1 (Equidistant Partition Minimizes Error). For any aT and N, and
any division.7, the error propagator is positive, and for the equidistantision
7, the error is globally minimized.

N N
Proof. Rewriting Err(7;a,T,N) = [] (1+ak,) 1 — ] (€*)%, we see that the
1 —1

n= n
error propagator is positive, since for all positikee* > 1+ x. To minimize the
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N
error, we thus have to minimiz@(.7) := [] (1+ak,) ! as a function of7 € RN,
n=1
with N inequality constraint&, > 0, and one equality constraigﬁ‘:lkn =T.We
compute the derivatives

ov, a 0°® O (1+9))@?
0_k;( )‘_Talq (7), M(y)_(1+alq)(1+akj)¢(y)’

and to show tha® is convex, we evaluate for an arbitrary vectot (x1,...,XN)

N 02® Pk — a2 - a2 2 o(F
2, ki, 706 = (i; Aranirak) it 2 Trane”) *)
N

- ((i: 1ixéh)2+i(1ixgh)z) ®(7)>0.

Therefore the Kuhn Tucker theorem applies, and the onlymmuini is given by the
existence of a Lagrange multiplierwith CD’Q?) + pl=0, 1the vector of all ones,
whose only solution is7 = .7, p=a(1+ak)"N-1.

We now consider a divisiot/; of geometric time stepk, := q" 1k, for n=
1,...,N as it was suggested in [8]. The constrgift ; kn = SN _; g""k; = T fixes
k1, and using this we get

n
-7
2j=19’
Since according to Theorem 1 the error is minimizeddot 1, one should not
choose very different from 1, and we now study the cape 1+ € asymptotically.

kn (7)

Theorem 2 (Asymptotic truncation error estimate). Let () := ®@(J)uo be
the approximate solution obtained with the divisigg for g = 1+ &. Then, for
fixed aT and N, the difference between the geometric mesh and figpdrstsh
approximations satisfies farsmall

un(q) — un(1) = a(aT,N)upe? + o(?), with

2 _ 2 (8)
a(N) = N(N24 ) (11/)%) (14 x/N) N,

Proof. Using a second order Taylor expansion, we obtain in thewatig two lem-
mas an expansion @b(.77, ) for smalle.

Lemma 1. The time stepkin (7) has fore small the expansionk= k(1 + ane +
Bne? +0(£2)), with an = n— M2 and B, = n(n— N — 2) + BEDINES) These coef-

ficients satisfy the relations, an = 3,8 =0, 3,02 = w

Lemma 2. For € small, we have the expansion
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%\%

N
|'| (1+aky) = 1+ak 1——Za g2 +0(&9)),with b_
n=1

We can now apply Lemma 2 to obtai(71,¢) = (91)(1+ 2n L02E% +
o(g?)), and replacingp in the definition ofuy concludes the proof

3 Error estimate for the diagonalization of B

The matrixB is diagonalizable if and only if all time stegg are different. The
eigenvalues are theé, and the eigenvectors form a basisr¥f. We will see be-
low that the matrix of eigenvectors is lower triangular. dincbe chosen with unit
diagonal, in which case it belongs to a special class of Taaplatrices:

Definition 1. A unipotent lower triangular Toeplitz matrix of si2&is of the form

1

X1

T(X1,.. . XN-1) = 9)

XN_1 ... X1 1

Theorem 3 (Eigendecomposition oB). If k, = " 1k; as in (7), then B has the
eigendecomposition B VDV~1, with D := diag(%), and V and its inverse are
unipotent lower triangular Toeplitz matrices given by

=T(p,---»PN-1), With pyi= (10)

__r
Mi_.(1-ql)
VL= T(gr.,qn1), With o= (~1)"q) py. (11)

Proof. Letv(" be the eigenvector with eigenval%e SinceB is a lower bidiagonal

matrix, a simple recursive argument shows wj%& 0 for j < n. One may choose

vi) = 1, which implies that forj > n we havev = (M) (- =1))~1, and the

matrixV = (v, ... .v(N)) is lower triangular Wlth unit dlagonal. Furthermore, if
kn = 6" 'ky, we obtain forj = 1,2,...,N —nthatvy?; = ([\_;(1~ o)) ! which
is independent ofi and thus proves the Toeplitz structure in (10).

Consider now the inverse &f. First, it is easy to see that it is also unipotent
Toeplitz. To establish (11) is equivalent to prove that

n
forl<n<N-1, zopn,jqj =0, with the conventionthapy =qgp=1. (12)
J:
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This result can be obtained using tipeanalogue of the binomial formula, see [7]:

Theorem 4 (Simplified g—binomial theorem). For any > 0, q # 1, and for any
neN, :
n C-n (=gt (1 —gM)

go(_l)JqT i-g-a-a 12)
Multiplying (13) by p, then leads to (12).

In the steps (a) and (c) of the direct time parallel solvey ¢ condition num-
ber of the eigenvector matri® has a strong influence on the accuracy of the re-
sults Normalizing the eigenvectors with respect to thenorm, S:= VD, with

dlag(\/ﬁ), leads to an asymptotically better condition number:
i=1 IPi

Theorem 5 (Asymptotic condition number estimate)For q= 1+ ¢, we have

conds(V) ~ ((N—1)1eN-1) 2, (14)
Ny Ny(N_ 1)1 ifNis even
conds(S) ~ gy s eN) = {(2712 2 ifNisodd )

Proof. Note first thatign| ~ | pn| ~ (n! €")~1. Therefore
11
IV [loo = 1+ [pa| + [P2l + -+ [Pn-a] ~ [pn-a] ~ (N=1)1eN 1) .

The same holds fof ~1, and gives the first result. We next defipe= /1 + 23-“;1” Ip;|2,
dn = % which impliesD = diag(dy). Theny, ~ |pn_nl|, and we obtain

|pn— J| L |pn- J|
S| =su ~su
ISi pz Yi np 1|pN n| n = l

By definitionS 1 =DV -1=D"1T(q,--- ,qn_1), thatis the linen of T(qy, -, gn_1)
is multiplied by . Therefore

1S H|w = SUm Yo 315105 | ~ SUR, YalGn-1| ~ SURK Yh| P 1] ~ SR [pn-nl|Pn-1

~(N— 1 1 ~—(N—
~ & MY supy ity ~ e -

4 Relative error estimates for ODEs and PDEs

We first give an error estimate for the ODE (5):

Theorem 6 (Asymptotic roundoff error estimate for ODES). Letu be the exact
solution of B1 = f, and 0 be the computed solution from the direct time parallel
solver (4) applied to (5), and denote the machine precision. Then
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Ju—dlle _ NN+ DN+aT) oy
[ulfe ™7 @(N)

Proof. In the ODE caseD = diag(% +a) and||D||» = 1/k; + a. Using backward

error analysis [6], the computed solution satisfies theupleeid systems

. (16)

(S+6S)d=f, (D+EDW=9, (S +6S)a=W,
and sinceSandS 1 are triangular an@® is diagonal we get (see [6])
18]l < Nul[S|+ (), [18S]l <Nu|S || +&(w?), [|8D]| < u|[D]|+ ().

Using algorithm (4) to solv8u = f by decomposition is equivalent to solvi(g§+
5S1)(D+6D)(S 1+ 6S) 0 =f, which is of the form

(B+3B)a=f, [8B] < (2N+1)u|S||S *||DIl+ ().

The relative error then satisfies (see [6])

< COHOKB)W < (@N+1u BT [SIIS DI

By a direct computation, we obtain for the inverseBof

9 :

R
o

B 1= kq
1q ¢ ...gV1
and hence|B™Ye = k(1 +q+...dN1) ~ Nk. Sincek; ~ k = T/N, (16) is
proved.

The error of the direct time parallel solver at tiecan be estimated by

|e’aTUo—0N|<|e’aTUo—UN(1)| lun(1) —un(g)| | |un(q) — On|

17
W Ju 0 o an

The first term on the right is the truncation error of the sexjaé method using
equal time steps. The second term is due to the geometric amekivas estimated
asymptotically in Theorem 2 to eee?. The last term can be estimated jy(q) —
0w/ |Uo| and thus Theorem 6, sinee> 0 which implies|ug| = ||u||. Because the
second term is decreasingdrand the last term is growing iy we equilibrate them
asymptotically:

Theorem 7 (Optimized geometric time mesh)Suppose the time steps are geomet-
ric, kn = q" k1, and gq= 1+ & with &€ small. Let ube the machine precision. For
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Fig. 1 Optimized choicegp(aT,N) from Theorem 7 (left). Ratio of the additional errors due to
parallelization to the truncation error of the fixed step moelt (17) with this choice ofy(aT,N)

(right)

€ = g(aT,N) with

2 NP1
N (2N+1)(N+aT)) | 8

fo(al.N) = <9 oN)a(aT,N)

wherea (aT,N) is defined in (8) ang(N) in (15, the error due to time paralleliza-
tion is asymptotically comparable to the one produced bygdgmmetric mesh.

Proof. This is a direct consequence of Theorem 6.

We show in Figure 1 on the left the optimized valegaT,N) from Theorem 7.
Choosinge = &(aT,N), the ratio between the additional errors due to paralleliza
tion to the truncation error of the fixed time step method mghin Figure 1 on the
right.

In order to obtain a PDE error estimate for the heat equaliprofe can argue as
follows: expanding the solution in eigenfunctions of thelaecian, we can apply our
results for the ODE witla = A;, A, for £ =1,2,... the eigenvalues of the negative
Laplacian. One can show for 8l > 1 and machine precisiansmall enough (single
precision suffices in practice) that our error estimate (Eg)its maximum foaT <
ar = 2.5129, and thus iAmin and T are such thadminT > a7, one can read off
the optimal choicep and resulting error estimate in Figure 1ladt = Amin T for a
given number of processoks Similarly, if we haveN processors and do not want
to increase the error compared to a sequential computagiondse than a given
factor, we can read in Figure 1 on the right the size of the tivirelow T to use
(knowinga = Anin), and the corresponding optimizeglon the left.
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Fig. 2 Discretization and parallelization errors, and conditember of the eigenvector matrix,
together with our theoretical bounds, left for the ODE, tifgit the PDE

5 Numerical Experiments

We first perform a numerical experiment for the scalar modeblem (5) with
a=1,T =1andN =10. We show in Figure 2 on the left how the discretizationierro
increases and the parallelization error decreases as &drg €, together with
our theoretical estimates, and also the condition numb#regigenvector matrix,
and our theoretical bound. We can see that the theoretipedigicted optimized
marked by a rhombus is a good estimate, and on the safe sitle, optimal choice

a bit to the left, where the dashed lines meet.

We next show an experiment for the heat equation in two dilnesn the unit
square, with homogeneous Dirichlet boundary conditiorgs @m initial condition
uo(X,y) = sin(mx) sin(1ty). We discretize with a standard five point finite difference
method in space with mesh sihg=h, = 1—10, and a Backward Euler discretization

in time on the time interva(0, %) usingN = 30 time steps. In Figure 2 on the right
we show again the measured discretization and parallielizatrors compared to
our theoretical bounds. As one can see from the graph, irek@mple, one could
solve the problem using 30 processors, and would obtainranwhich is within a
factor two of the sequential computation.
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