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1 Introduction

It has been shown in [4] that block Jacobi iterates of a discretization obtained
from hybridizable discontinuous Galerkin methods (HDG) can be viewed as
non-overlapping Schwarz methods with Robin transmission condition. The
Robin parameter is exactly the penalty parameter µ of the HDG method.
There is a stability constraint on the penalty parameter and the usual choice
of µ results in slow convergence of the Schwarz method. In this paper we show
how to overcome this problem without changing µ. To fix ideas, we consider
the model problem

(η −∆)u = f in Ω ⊂ R2,
u = 0 on ∂Ω,

(1)

where Ω is a bounded polygon, 0 ≤ η ≤ η0 and f ∈ L2(Ω). We then con-
sider a hybridiazble interior penalty (IPH) discretization and develop domain
decomposition algorithms to solve the resulting linear system efficiently. For
the sake of brevity we consider the two-subdomain case in this paper.

Our paper is organized as follows: in Section 2 we describe the IPH method.
We introduce a Schur complement system for the IPH discretization and
review some of its properties in Section 3. In Section 4 we introduce two
iterative methods for the Schur complement and present their convergence
behavior. Finally we present some numerical experiments in Section 5.
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2 Hybridizable Interior Penalty method

IPH was first introduced in [2] and later studied as a member of the class of
hybridizable DG methods in [1]. We first establish some notation and then
define the IPH method in two different but equivalent forms. Let Th = {K}
be a shape-regular and quasi-uniform triangulation of the domain Ω. Let hK
be the diameter of an element of the triangulation and h = maxK∈Th hK . If
e is an edge of an element, we denote by he the length of that edge.

We denote by E0 the set of interior edges, by E∂ the set of boundary
edges and all edges by E := E∂ ∪ E0. We introduce the broken Sobolev space
Hl(Th) :=

∏
K∈Th Hl(K) where Hl(K) is the Sobolev space in K ∈ Th and l

is a positive integer. Therefore the element boundary traces of functions in
Hl(Th) belong to T(E) =

∏
K∈Th L2(∂K), where q ∈ T(E) can be double-

valued on E0, and is single-valued on E∂ .
We also define two trace operators: let q ∈ T(E) and σ ∈ [T(E)]2. On

e = ∂K1 ∩ ∂K2 we then define average {{·}} and jump [[·]] operators by

{{q}} = 1
2 (q1 + q2), [[q]] = q1 n1 + q2 n2,

{{σ}} = 1
2 (σ1 + σ2), [[σ]] = σ1 · n1 + σ2 · n2,

(2)

where ni is the unit outward normal of Ki on e, qi := q|∂Ki∩e and σi :=
σ|∂Ki∩e. On ∂Ω we set the average and jump operators to be {{σ}} = σ and
[[q]] = q n respectively. Note that we do not need to specify {{q}} and [[σ]] on
e ∈ E∂ because it is not needed in the formulation.

We define a finite-dimensional broken space on Th for the discrete ap-
proximation Vh :=

{
v ∈ L2(Ω) : v|K ∈ P1(K),∀K ∈ Th

}
, where Pk(K) is

the space of polynomials of degree ≤ k in the simplex K ∈ Th.
For the sake of simplicity we denote the volume and surface integrals by

(a, b)K =
∫
K
a b for K ∈ Th and 〈a, b〉e =

∫
e
a b for e ∈ E .

We now present IPH method in primal and hybridizable form. Let u, v ∈
H2(Th), then the IPH bilinear form of the model problem (1) is defined as

a(u, v) := η(u, v)Th + (∇u,∇v)Th − 〈{{∇u}}, [[v]]〉E − 〈{{∇v}}, [[u]]〉E
+
〈
µ
2 [[u]], [[v]]

〉
E −

〈
1
2µ [[∇u]], [[∇v]]

〉
E0
,

(3)

where µ ∈ L2(E) is the penalty parameter. For a constant α > 0 we set
µ|e = αh−1e . We should mention that this scaling cannot be weakened due to
stability constraints. The IPH bilinear form is different from the classical IP
only in the last term, i.e. the last term is not present in the IP bilinear form.
For a formal derivation of the bilinear form (3) see [6, Section 1.2.2].

The IPH bilinear form is coercive over Vh provided α > 0 and sufficiently
large, that is we can show

a(v, v) ≥ c‖v‖2DG, ∀v ∈ Vh,
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where 0 < c < 1 is a constant independent of h. Here the energy norm is
defined as

‖v‖2DG := η‖v‖2Th + ‖∇v‖2Th +
∑
e∈E

µe‖[[v]]‖2e, ∀v ∈ Vh. (4)

The discrete problem can be stated as: find uh ∈ Vh such that

a(uh, v) = (f, v)Th , ∀v ∈ Vh. (5)

Since a(·, ·) is coercive over Vh, we can conclude that there exists a unique
discrete solution. Furthermore we can show that IPH has optimal approxi-
mation properties provided α > 0 is sufficiently large; see [6].

We show now that one can write IPH in a hybridized form, such that static
condensation with respect to a single-valued unknown is possible. This is not
the case for most DG methods, e.g. classical IP. Let us decompose the domain
into two non-overlapping subdomains Ω1 and Ω2. Denoting the interface by
Γ := Ω1 ∩ Ω2, we assume Γ ⊂ E0, i.e. the cut does not go through any
element of the triangulation. This results in a natural partitioning of Th into
T1 and T2; for an example see Figure 1 (right).

This naturally allows us to introduce local spaces on Ω1 and Ω2 by

Vh,i :=
{
v ∈ L2(Ωi) : v|K∈Ti ∈ P1(K)

}
, for i = 1, 2. (6)

Note that this domain decomposition setting implies Vh = Vh,1 ⊕ Vh,2. We
define on the interface the space of broken single-valued functions by

Λh :=
{
ϕ ∈ L2(Γ ) : ϕ|e∈Γ ∈ P1(e)

}
. (7)

For the sake of simplicity we denote the restriction of v ∈ Vh on Vh,i by vi.
Observe that the trace of vi ∈ Vh,i on Γ belongs to Λh.

Let (u, λ), (v, ϕ) ∈ Vh × Λh and consider the symmetric bilinear form

ã((u, λ), (v, ϕ)) := ãΓ (λ, ϕ) +

2∑
i=1

ãi(ui, vi) + ãiΓ (vi, λ) + ãiΓ (ui, ϕ), (8)

where ãΓ (λ, ϕ) := 2〈µλ, ϕ〉Γ , ãiΓ (vi, ϕ) :=
〈
∂vi
∂ni
− µvi, ϕ

〉
Γ

and

ãi(ui, vi) := η(ui, vi)Ti + (∇ui,∇vi)Ti − 〈{{∇ui}}, [[vi]]〉E0i − 〈{{∇vi}}, [[ui]]〉E0i
+
〈
µ
2 [[ui]], [[vi]]

〉
E0i
−
〈

1
2µ [[∇ui]], [[∇vi]]

〉
E0i

−
〈
∂ui

∂ni
, vi

〉
∂Ωi

−
〈
∂vi
∂ni

, ui

〉
∂Ωi

+ 〈µui, vi〉∂Ωi
.

(9)
The bilinear form ã(·, ·) is also coercive at the discrete level if α > 0, inde-
pendent of h and sufficiently large:
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ã((v, ϕ), (v, ϕ)) ≥ c ‖(v, ϕ)‖2HDG ∀(v, ϕ) ∈ Vh × Λh, (10)

where c is independent of h and the HDG-norm is defined by

‖(v, ϕ)‖2HDG :=

2∑
i=1

η‖vi‖2Ti + ‖∇vi‖2Ti + µ‖[[vi]]‖2Ei\Γ + µ‖vi − ϕ‖2Γ . (11)

Consider the following discrete problem: find (uh, λh) ∈ Vh×Λh such that

ã((uh, λh), (v, ϕ)) = (f, v)Th , ∀(v, ϕ) ∈ Vh × Λh, (12)

which has a unique solution since ã(·, ·) is coercive on Vh × Λh. One can
eliminate the interface variable, λh, and obtain a variational problem in terms
of uh only. It turns out that this coincides with the variational problem (5);
for a proof see [6].

Remark 1. By definition of the bilinear forms, each subproblem is imposing
λh weakly as Dirichlet data along Γ through a Nitsche penalization. This is
an IPH discretization of the continuous problem (η − ∆)w = f in Ωi and
w = λh on Γ .

3 Schur complement system

We choose nodal basis functions for P1(K) and denote the space of coefficient
vectors with respect to nodal basis functions of Vh by V . If uh ∈ Vh we denote
by u ∈ V its corresponding coefficient vector. The variational problem in (5)
is equivalent to the linear system Au = f . A is called the stiffness matrix.
We decompose u into {u1,u2} where ui corresponds to coefficients of nodal
basis functions in Ωi. Then we can arrange the entries of A and rewrite the
linear system as [

A1 A21

A21 A2

](
u1

u2

)
=

(
f1

f2

)
. (13)

We use nodal basis functions for Λh and denote by λ the corresponding
coefficient vector for λh ∈ Λh. Then the variational form (12) can be written
as  Ã1 Ã1Γ

Ã2 Ã2Γ

ÃΓ1 ÃΓ2 ÃΓ

u1

u2

λ

 =

f1

f2

0

 , (14)

where ÃΓi = Ã>iΓ . Note that the advantage of this formulation over (13) is
that subdomains are communicating through λ and we can form a Schur com-
plement for a single-valued function, λh. To do so we define B̃i := ÃΓiÃ

−1
i ÃiΓ

and gΓ :=
∑2
i=1 ÃΓiÃ

−1
i f i. Then the Schur complement system reads
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S̃Γλ :=
(
ÃΓ −

2∑
i=1

B̃i

)
λ = gΓ . (15)

We define ui := Hi(λh) to be the discrete harmonic extension of λh ∈ Λh
into subdomain Ωi, i.e. ui satisfies Ãiui + ÃiΓλ = 0; that is we impose λh as
Dirichlet data (weakly) on Γ and solve inside Ωi. The following result shows
that an application of B̃iλ can be viewed as finding the harmonic extension,
ui := Hi(λh), and then evaluating a “Robin-like trace” on the interface.

Proposition 1. Let λh ∈ Λh and define its harmonic extension by ui :=

Hi(λh). Then ϕ>B̃iλ =
〈
µui − ∂ui

∂ni
, ϕ
〉
Γ

for all ϕ ∈ Λh.

Proof. Let ui := Hi(λh). Then by definition of B̃i and ãiΓ (·, ·) we have

ϕ>B̃iλ = ϕ>ÃΓiÃ
−1
i ÃiΓλ = −ϕ>ÃΓiui =

〈
µui − ∂ui

∂ni
, ϕ
〉
Γ
, for all ϕ ∈ Λh,

which completes the proof, since ÃΓi = Ã>iΓ . ut

One can estimate the eigenvalues of {B̃i}. They are useful in proving conver-
gence of Schwarz methods later on. The proofs are technical and beyond the
scope of this short paper. They can be found in [5].

Lemma 1. B̃i is s.p.d. and there exists α > 0, sufficiently large, such that

cB µ ‖ϕ‖2Γ ≤ ϕ>B̃iϕ ≤
(

1− CB
h

α

)
µ ‖ϕ‖2Γ ,

where 0 < cB < 1 and CB > 0. Both constants are independent of h. More-
over ÃΓ − 2B̃i is s.p.d. for i = 1, 2.

4 Schwarz methods for the Schur complement system

One approach in solving the linear system (13) is to use the block Jacobi
method:

Mu(n+1) = Nu(n) + f , M =

[
A1

A2

]
, N = M −A. (16)

Instead in this section we derive two Schwarz algorithms to solve the Schur
complement system where the first one is equivalent to (16) and slow while
the second one has much faster convergence.

Let us relax the constraint that λh is single-valued. Let λh,1, λh,2 ∈ Λh.
Assume λh,2 is known; that is we know u2 ∈ Vh,2. Then we can split the

Schur complement system (15) and solve for λh,1, through (ÃΓ − B̃1)λ1 =

B̃2λ2 +gΓ . Lemma 1 ensures that (ÃΓ − B̃1) is invertible and we can obtain
λh,1. This suggests an iterative method to find λh.
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Algorithm 1 (block Jacobi) Let λ
(0)
h,1, λ

(0)
h,2 ∈ Λh be two arbitrary initial

guesses. Then for n = 1, 2, . . . solve (17) for
{
λ
(n)
h,i

}
.

(ÃΓ − B̃1)λ
(n)
1 = B̃2λ

(n−1)
2 + gΓ ,

(ÃΓ − B̃2)λ
(n)
2 = B̃1λ

(n−1)
1 + gΓ .

(17)

Note that at convergence we have ÃΓ (λ1 − λ2) = 0 which implies λ1 =
λ2 = S̃−1Γ gΓ since ÃΓ is s.p.d. We show now that Algorithm 1 is equivalent
to the block Jacobi iteration (16). It suffices to prove this for f = 0 (gΓ = 0).

Proposition 2. Let λ
(0)
h,1, λ

(0)
h,2 be two random initial guesses. Set the initial

guess of the block Jacobi iteration (16) to be u
(0)
i = Hi(λ

(0)
h,i). Then u

(n)
i =

Hi(λ
(n)
h,i ) for all n > 0, i.e. both methods produce the same iterates.

Proof. We start by subdomain Ω1. Set w
(n)
h,i = Hi(λ(n)h,i ). By Proposition 1,

we have ϕ>B̃iλ
(n)
i =

〈
µw

(n)
h,i − ∂ni

w
(n)
h,i , ϕ

〉
Γ

for all ϕ ∈ Λh. Then the first

equation in iteration (17) implies λ
(n)
h,1 =

(
1
2−

1
2µ∂n1

)
w

(n)
h,1+

(
1
2−

1
2µ∂n2

)
w

(n−1)
h,2 .

Recall that w
(n)
h,1 is the harmonic extension, hence it satisfies ãi(w

(n)
h,1 , v1) +

ãiΓ (v1, λ
(n)
h,1) = 0 for all v1 ∈ Vh,1. Now we substitute λ

(n)
h,1 in terms of w

(n)
h,1 and

w
(n−1)
h,2 . We arrive at exactly the first row of block Jacobi (16), i.e. A1w

(n)
1 +

A12w
(n−1)
2 = 0. The proof for Ω2 is similar. ut

Convergence of the block Jacobi (16) or equivalently Algorithm 1 can be
proved with the contraction factor ρh ≤ 1 − O(h). For details we refer the
reader to [5].

The slow convergence of this algorithm is due to the fact that the trans-
mission condition is of Robin type with Robin parameter µ = αh−1; see [4].
According to optimized Schwarz theory the best choice is µ = O(h−1/2); see
[3]. We would like to emphasize that for IPH, one cannot change the scaling
of µ because of coercivity and approximation property constraints.

The remedy is to split the Schur complement differently. We know from
Lemma 1 that ÃΓ − 2Bi is s.p.d. Therefore assuming λ2 is known we can
multiply the Schur complement by (1+ p̂) where p̂ is a constant and solve for
λ1 such that

(ÃΓ − (1 + p̂)B1)λ1 = −(p̂ÃΓ − (1 + p̂)B̃2)λ2 + (1 + p̂)gΓ .

If 0 ≤ p̂ < 1 then the left hand side is still s.p.d. We use p̂ to obtain a fast
converging solver. Note that for p̂ = 0 we have Algorithm 1.

Algorithm 2 (optimized Schwarz) Let λ
(0)
h,1, λ

(0)
h,2 ∈ Λh be two arbitrary

initial guesses and 0 ≤ p̂ < 1 be a constant. Then for n = 1, 2, . . . solve (18)

for
{
λ
(n)
h,i

}
.
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(ÃΓ − (1 + p̂)B̃1)λ
(n)
1 = −(p̂ÃΓ − (1 + p̂)B̃2)λ

(n−1)
2 + (1 + p̂)gΓ ,

(ÃΓ − (1 + p̂)B̃2)λ
(n)
2 = −(p̂ÃΓ − (1 + p̂)B̃1)λ

(n−1)
1 + (1 + p̂)gΓ .

(18)

At convergence we have (1 − p̂)ÃΓ (λ1 − λ2) = 0 which implies λ1 =
λ2 = S̃−1Γ gΓ if p̂ 6= 1. An application of Proposition 1 and Remark 1 shows
Algorithm 2 has a modified Robin parameter which we summarize in the next
proposition.

Proposition 3. Algorithm 2 is the discrete version of the non-overlapping
optimized Schwarz method

Lu(n+1)
1 = f in Ω1, Lu(n+1)

2 = f in Ω2,

B1u
(n+1)
1 = B1u

(n)
2 on Γ , B2u

(n+1)
2 = B2u

(n)
1 on Γ ,

where L := (η −∆), Bi := µ̂+ ∂ni and Robin parameter µ̂ := 1−p̂
1+p̂µ.

A heuristic approach in obtaining optimal p̂ is to set the modified Robin

parameter to µ̂ = O(h−1/2) and solve for p̂. This results in p̂ = 1−
√
h

1+
√
h
< 1.

A rigorous proof at the discrete level in [5] gives same scaling and with
this choice of p̂ the contraction factor of Algorithm 2 is bounded by ρh ≤
1−O(

√
h).
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Fig. 1 Convergence of the Schwarz algorithms (left), domain decomposition (right).

5 Numerical experiments

We consider (η − ∆)u = f in Ω and u = 0 on ∂Ω where we set η = 1,
Ω = (0, 1)2 and f such that the exact solution is u(x, y) = sin(πx) sin(2πx+
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π
4 ) sin(2πy) in Ω. We set the penalty parameter to µ = 10h−1e . We choose
a non-straight interface as in Figure 1 (right). We measure the number of

iterations necessary to reduce the error ‖uh − u
(n)
h ‖0 to 10−10 on a sequence

of (quasi-uniform) unstructured meshes while the interface is fixed. As for
the initial guess, we set DOFs of the initial guess using a random number
generator; in Matlab given by rand(N DOF).

In Figure 1 (left) we observe for Algorithm 1 that the number of iterations
grows like O(h−1). This is equivalent to ρh ≤ 1 − O(h). For Algorithm 2
with the optimal value of p̂ we see that it grows like O(h−1/2) hence ρh ≤
1 − O(

√
h). This is in agreement with the results in Section 4. For more

extensive numerical experiments see [5].

6 Conclusions

It has been shown in [4] that for some DG methods one can obtain a fast con-
verging solver by just modifying the penalty parameter while for some other
it is not possible, e.g. IPH. We showed that it is possible to define an iterative
method, Algorithm 2, for IPH such that we obtain fast convergence without
changing the penalty parameter. We are now studying a multi-subdomain
version of Algorithm 2 and the case of higher polynomial degree, k > 1.
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