
A stochastic domain decomposition
method for time dependent mesh
generation

Alexander Bihlo1 and Ronald D. Haynes2

1 Introduction

We are interested in PDE based mesh generation. The mesh is computed as
the solution of a mesh PDE which is coupled to the physical PDE of interest.
In [3] we proposed a stochastic domain decomposition (SDD) method to find
adaptive meshes for steady state problems by solving a linear elliptic mesh
generator. The SDD approach, as originally formulated in [1], relies on a
numerical evaluation of the probabilistic form of the exact solution of the
linear elliptic boundary value problem. Monte–Carlo simulations are used
to evaluate this probabilistic form only at the sub-domain interfaces. These
interface approximations can be computed independently and are then used
as Dirichlet boundary conditions for the deterministic sub-domain solves. It
is generally not necessary to solve the mesh PDEs with high accuracy. Only a
good quality mesh, one that allows an accurate representation of the physical
PDE, is required. This lower accuracy requirement makes the proposed SDD
method computationally more attractive, reducing the number of Monte–
Carlo simulations required.

Grid adaptation by a SDD approach does generate interesting issues in its
own right. Grid quality should be monitored during the interface solves to give
a suitable stopping criteria for the stochastic portion of the algorithm. Such
a stopping criteria can be readily implemented by checking the mesh quality
(as measured e.g. through mesh smoothness, alignment or equidistribution,
see [5]) after every nth Monte–Carlo simulation. If the mesh quality is below
a threshold, the additive nature of expected value computations allows one to
resume the Monte–Carlo simulations and hence improve the mesh generation.

Memorial University of Newfoundland, St. John’s, NL, Canada abihlo@mun.ca · Memorial

University of Newfoundland, St. John’s, NL, Canada rhaynes@mun.ca

1



2 Alexander Bihlo and Ronald D. Haynes

As mentioned, in [3] only the steady grid generation problem was consid-
ered. Of course, in practice, the problem of grid generation is coupled with
the process of solving the system of physical, often time dependent, PDEs.
It is this latter issue that we begin to explore in this paper.

We are interested in time dependent PDEs whose solutions evolve on dis-
parate space and time scales. The solution behaviour lends itself to the use of
time dependent meshes which automatically adapt and evolve to efficiently
resolve the solution features. The generation of these time dependent grids
can be done either by statically applying an elliptic mesh generator using the
physical solution obtained at the previous time step or by employing a time
relaxation of the static mesh PDE resulting in a parabolic moving mesh PDE,
as in [5]. The extension of the SDD approach to (linear) parabolic mesh gen-
erators is possible due to the existence of a stochastic representation of the
exact solution of such linear parabolic problems. For the sake of illustration,
we will work with the time-relaxed form of the Winslow–Crowley variable
diffusion mesh generation method, first described in [9].

2 Winslow’s method

The equipotential method of mesh generation in 2D, as described in [4], found
the mesh lines in the physical co-ordinates x and y as the level curves of the
potentials ξ and η satisfying Laplace’s equations

∇2ξ = 0, ∇2η = 0, (1)

and appropriate boundary conditions which ensure grid lines lie along the
boundary of the domain. Here derivatives are with respect to the physical
co–ordinates. The mesh transformation, x(ξ, η) and y(ξ, η), in the physical
domain Ωp, can be found by (inverse) interpolation of the solution of (1)
onto a (say) uniform (ξ, η) grid. In practice, the inversion to the physical
co–ordinates is not necessary. Instead one could transform the physical PDE
of interest to the computational co–ordinate system.

Winslow [10] generalized (1) by adding a diffusion coefficient w(x, y) de-
pending on the gradient or other aspects of the solution. This gives the linear
elliptic mesh generator

∇ · (w∇ξ) = 0 and ∇ · (w∇η) = 0. (2)

The function w(x, y), known as a mesh density function, characterizes regions
where additional mesh resolution is needed and in general depends on the
solution of the physical PDE. We assume w and 1/w are strictly positive,
bounded C2-functions.

Here we assume the solution of the physical PDE is time dependent and
hence the mesh density function is changing with time, w = w(t, x, y). One



Stochastic mesh generation 3

could still use (2) to solve the mesh transformation at each time t. For time
dependent PDEs this would result a system of differential–algebraic equations
for the physical solution and the mesh. Instead, we choose to relax (2) to
obtain a parabolic linear mesh generator of the form

ξt =
1

T
(∇w · ∇ξ + w∇2ξ) and ηt =

1

T
(∇w · ∇η + w∇2η). (3)

This gives a mesh PDE which depends explicitly on the mesh speed and
provides a degree of temporal smoothing for the mesh. In fact one can show
the difference between the solution of (3) and the solution of (2) goes to zero
as T → 0, see [5]. In the following, we set T = 1.

Below we only work with prescribed functions for w. In practice, however,
the monitor function would be linked to the solution of a physical PDE. For

example, one could use an arc-length type function ρ =
√

1 + α(u2x + u2y)

and choose w = 1/ρ. We also note that our algorithm uses an interpolated
form of w instead of the analytic expression. In practice, this is necessary
since u is only known on the current grid as we alternately solve the mesh
and physical PDEs.

3 Linear parabolic differential equations and stochastic
domain decomposition

The system of mesh PDEs (3) is of the form

ξt = Lξ, ηt = Lη, (4)

where ξ(t, x, y) and η(t, x, y) are the computational coordinates defined over
[0, T ]×Ωp. In system (4), L is a linear elliptic operator of the form

L = aij
∂2

∂xi∂xj
+ bi

∂

∂xi
,

with continuous coefficient matrix a(t, x, y) = (aij)(t, x, y), i, j ∈ {1, 2}, and
drift vector b = (b1, b2)T(t, x, y). Here we employ the summation conven-
tion over repeated indices. System (4) is accompanied by smooth bound-
ary and initial conditions ξ|∂Ωp

= f(t, x, y), η|∂Ωp
= g(t, x, y), ξ(0, x, y) =

ξ0(x, y), and η(0, x, y) = η0(x, y).
The solution of such linear parabolic problems can be described using the

tools of stochastic calculus [2, 7]. Provided that ξ and η are C1-functions in t
and C2 in (x, y), the point–wise solution of system (4) at (t, x, y) ∈ [0, T ]×Ωp
is given probabilistically as



4 Alexander Bihlo and Ronald D. Haynes

ξ(t, x, y) = E
[
ξ0(X(t))1[τ∂Ωp>t]

]
+ E

[
f(t− τ∂Ωp

,X(τ∂Ωp
))1[τ∂Ωp<t]

]
, (5)

where the process X(t) = (x(t), y(t))T satisfies, in the Îto sense, the stochastic
differential equation (SDE)

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW(t).

The relation between σ and (aij) is given through

1

2
σ(t, x, y)σ(t, x, y)T = a(t, x, y)

for all (t, x, y) ∈ [0, T ]×R2. The solution for η(t, x, y) is completely analogous.
In (4), the E[·] denotes the expected value, τ∂Ωp is the time when the

stochastic path starting at (x, y) first hits the boundary of the physical do-
main Ωp, W is two-dimensional Brownian motion and 1 is the indicator
function. See [7] for a proper definition of the required probability space.

The time dependent mesh generator (3) is a special case of the general
form (4) with

a(t, x, y) = wI2, b1(t, x, y) = wx, b2(t, x, y) = wy, (6)

where I2 is the 2× 2 identity matrix.
For our two dimensional mesh generator we choose the initial conditions

ξ(t = 0, x, y) = ξ0(x, y) = x and η(t = 0, x, y) = η0(x, y) = y, corresponding
to an initial uniform mesh, and the static boundary conditions ξ(t, xl, y) =
0, ξ(t, xr, y) = 1, η(t, x, yl) = 0 and η(t, x, yu) = 1. This ensures we use
the standard computational domain Ωc = [0, 1] × [0, 1] and the rectangular
physical domain Ωp = [xl, xr] × [yl, yu]. The remaining boundary conditions
for ξ(t, x, yl), ξ(t, x, yu), η(t, xl, y) and η(t, xr, y) are determined by solving the
1D version of (2) along the boundaries. Collectively, we use f and g to denote
these boundary conditions for ξ and η as in Eq. (5).

Hence we have to solve the SDE

dX(t) = ∇w dt+
√

2w dW(t), (7a)

for the single path X(t). The stochastic form of the exact solution of Eq. (3)
for ξ is then obtained by evaluating

ξ(t, x, y) = E
[
ξ0(X(t))1[τ∂Ωp>t]

]
+ E

[
f(X(τ∂Ωp

))1[τ∂Ωp<t]

]
. (7b)

The point–wise solution for η(t, x, y) is obtained in an analogous fashion.
In principle, the probabilistic solution (7) allows one to determine the

computational coordinates ξ and η at each point in the space–time domain
[0, T ]×Ωp. However, this is prohibitively expensive (unless a sufficiently large
number of compute cores is available). A more efficient approach is to evaluate



Stochastic mesh generation 5

the solution (7) only at points along artificially imposed interfaces. These
solutions serve as boundary values for the DD implementation. Moreover,
one can reduce the number of stochastic solves along the interfaces even
further as described at the end of the next section, cf. [2].

In the mesh generation context it is not possible to obtain the solution
of (5) at all times, as the solution of the mesh PDE is coupled to the physical
solution. That is, rather than solving (5) for a time t ∈ [0, T ], it is generally
only possible to use this stochastic solution to advance the solution of (4)
over one single time step from tn to tn+1. In this case, ξ0 and η0 should be
interpreted as the values of ξ and η at time tn and the monitor function, w,
is given at either tn or tn+1 and remains constant over the time step.

4 The numerical method

Stochastic solver and domain decomposition. The use of the stochas-
tic solution (5) for the time-relaxed Winslow mesh generator with parame-
ters (6) is straightforward. We solve (7a) using the classical Euler–Maruyama
scheme, i.e. we employ linear time-stepping. An alternative would be to use
exponential time-stepping as advocated e.g. in [1, 3, 6]. In our tests, lin-
ear time-stepping gives sufficient accuracy. The components of the Brownian
motion dW(t) are computed as

√
∆tN (0, 1), where N (0, 1) is a normally

distributed random number with mean zero and variance one [7].
The time dependent weight only becomes available at each time step (due

to a possible coupling with a physical PDE). Hence we are only able to
employ formula (7b) to integrate over a single time step, i.e. from tn to tn+1.
Over this time step, the weight function is evaluated at tn and held constant,
i.e. we have wn(x, y) = w(tn, x, y) in (7a). Accordingly, ξ0 in Eq. (7b) is
to be interpreted as ξn0 = ξ(tn, x, y), i.e. the values of the computational
coordinates at the current time tn. Moreoever, the boundary functions f and
g are updated at each time to reflect changes in the physical solution.

We then numerically integrate the SDE (7a) from tn to tn+1. The drift
vector b = ∇w is required everywhere along the path of the stochastic process
X(t) but is only available directly at the grid points of the domain. Bilinear
interpolation is used to obtain the values of b in between these grid points.
The quantity ∇w is approximated using finite differences.

In the DD context, the stochastic solution is only required at a selection of
points, (xik, y

i
k), which live on the interfaces between sub-domains. One time

step ∆t is split into several smaller sub-time steps in order to numerically
integrate the SDE (7a) from tn to tn+1. We found this splitting of ∆t into
sub-time steps necessary to determine, with sufficient accuracy, whether the
stochastic processes has left the domain Ωp during ∆t. This is not unlike the
Mk approach for mesh generation discussed in [5]. At each sub-time step, a
boundary test is performed to determine whether the stochastic process has



6 Alexander Bihlo and Ronald D. Haynes

left the domain Ωp. If this is the case, the process contributes via the second
term in Eq. (7b) to the approximation of ξ(tn+1, xik, y

i
k). If the stochastic pro-

cess did not leave the domain until tn+1 is reached, it contributes to the first
term in the approximation of ξ(tn+1, xik, y

i
k) in Eq. (7b). The computation of

η(tn+1, xik, y
i
k) is handled analogously. The expected values are then replaced

by arithmetic means. Note, it is not desirable to make ∆t itself smaller, as
this would degrade the efficiency of the (deterministic) implicit sub-domain
solver, which is described below.

Deterministic sub-domain solver. The values of ξ and η along the
subdomain interfaces serve as boundary conditions for the sub-domain solver.
The sub-domain solver we employ is an implicit finite-difference discretization
of Eq. (3). The matrix system is solved using an LU-factorization.

Parallelization and further speed-up. It is well-known that Monte-
Carlo techniques converge rather slowly [8] and are usually most competitive
for problems in high dimensions. The use of the stochastic solution to obtain
the interface values of a DD problem only, however, is considerably more ef-
ficient and provides a fully parallel grid generation algorithm. Moreover, the
DD method requires no iteration. The stochastic solutions on the interfaces
can be determined at each point separately and each Monte-Carlo simulation
is independent. Additionally, each sub-domain solution could potentially be
assigned to a single processor once the interface solutions are obtained, yield-
ing excellent scalability. Due to the fully parallel nature of the algorithm,
the method is also fault tolerant. This renders the method suitable for an
implementation on massively parallel computing architectures, cf. [1, 2, 3].

A further source of improvement stems from the fact that ξ and η do not
have to be computed at all grid points along the interfaces. As proposed
in [1] it may be sufficient to use the stochastic solution only at few points
on the interface and recover the solution at the remaining interface points
using interpolation. In [3] we have used a relatively simple optimal placement
strategy to determine the most important locations on the interface where
the stochastic solution should be computed. We use the same strategy in the
present algorithm, i.e. the stochastic solution is computed near the maxima
and minima of wx and wxx along the horizontal interfaces and wy and wyy
along the vertical interfaces.

5 Numerical Results

We present an example for our SDD method to generate an adaptive (moving)
mesh for the weight function w = 1/ρ, where

ρ = 1+α exp

(
β

∣∣∣∣∣
(
x− 1

2
− 1

4
cos(2πt)

)2

+

(
y − 1

2
− 1

4
sin(2πt)

)2

− 1

100

∣∣∣∣∣
)
.



Stochastic mesh generation 7

We choose the parameters α = 10 and β = −50 used in [5]. Both the physical
and computational domain are the unit square. The grid we generate has 41×
41 nodes and is divided into four sub-domains. On the interfaces we determine
the stochastic solution at the key points using the optimal placement strategy
mentioned in the previous section. Piecewise cubic Hermite interpolation is
used to determine the remaining interface points. We integrate (3) up to
t = 0.75 using ∆t = 0.001. Each time step is split into 20 sub-time steps while
solving the SDE (7a) and N = 10000 Monte-Carlo simulations are used to
estimate the expected value in (7b). The resulting meshes at t = 0.25, t = 0.5,
and t = 0.75 are depicted in Fig. 5.



8 Alexander Bihlo and Ronald D. Haynes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1 Top to bottom: Meshes obtained from the parabolic mesh generator (3) using the
SDD method at t = 0.25, t = 0.5, and t = 0.75. Left: Meshes over the physical domain.

Right: Meshes over the computational domain obtained from the former using natural

neighbor interpolation. Thick line: Sub-domain interfaces. Circles: Points where the mesh
is obtained using the stochastic solution (7).

The method is able to produce smooth meshes over the physical domain
that adapt well to the time-dependent monitor function. No explicit smooth-
ing was applied to the final meshes in this example. In general we have found
sub-domain smoothing to be a way to further reduce the number of Monte-
Carlo simulations needed in the probabilistic expression (7b), see [3].



Stochastic mesh generation 9

6 Conclusion

In this paper we have proposed a new stochastic domain decomposition
method for the construction of adaptive moving meshes suitable for time-
dependent problems. The method is fully parallelizable as the values of the
computational coordinates ξ and η on the single sub-domains can be deter-
mined without information exchange from neighboring sub-domains and all
the interface values can be computed independently.

Future refinements include the use of exponential time-stepping to solve
the SDE (7a). More generally, more sophisticated boundary tests could bet-
ter determine the first exit time of a stochastic process. This will allow using
larger time steps in the solution of (7a) thus making the method more effi-
cient. An alternate approach to generate time dependent meshes is to apply
the stochastic–DD method from [3] to the sequence of elliptic problems which
result from discretizing (2) in time.

Acknowledgements. This research was supported by NSERC (Canada).
AB is a recipient of an APART Fellowship of the Austrian Academy of Sci-
ences. The authors thank Professor Weizhang Huang (Kansas) and the two
anonymous referees for helpful remarks.

References

1. Acebrón, J.A., Busico, M.P., Lanucara, P., Spigler, R.: Domain decomposition solution
of elliptic boundary-value problems via Monte Carlo and quasi-Monte Carlo methods.

SIAM J. Sci. Comput. 27(2), 440–457 (2005)

2. Acebrón, J.A., Rodŕıguez-Rozas, Á., Spigler, R.: Efficient parallel solution of nonlinear
parabolic partial differential equations by a probabilistic domain decomposition. J. Sci.

Comput. 43(2), 135–157 (2010)

3. Bihlo, A., Haynes, R.D.: Parallel stochastic methods for PDE based grid generation.
Comput. Math. Appl. 68(8), 804–820 (2014)

4. Crowley, W.P.: An ‘equipotential’ zoner on a quadrilateral mesh. Tech. rep. (1962)
5. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods. Springer, New York (2010)

6. Jansons, K.M., Lythe, G.D.: Exponential timestepping with boundary test for stochas-

tic differential equations. SIAM J. Sci. Comput. 24(5), 1809–1822 (2003)
7. Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, Graduate Texts

in Mathematics, vol. 113. Springer, New York (1991)

8. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes 3rd
edition: The art of scientific computing. Cambridge University Press, UK (2007)

9. Winslow, A.M.: Numerical solution of the quasilinear Poisson equation in a nonuniform
triangle mesh. J. Comput. Phys. 1(2), 149–172 (1966)

10. Winslow, A.M.: Adaptive-mesh zoning by the equipotential method. Tech. Rep. UCID-

19062, Lawrence Livermore National Lab., CA (USA) (1981)


