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Abstract We investigate a geometric full multigrid method for solving the
large sparse linear systems which arise in isogeometric discretizations of ellip-
tic partial differential equations. We observe that the full multigrid approach
performs much better than the V-cycle multigrid method in many cases, in
particular in higher dimensions with increased spline degrees. Often, a single
cycle of the full multigrid process is sufficient to obtain a quasi-optimal so-
lution in the L2-norm. A modest increase in the number of smoothing steps
suffices to restore optimality in cases where the V-cycle performs badly.

1 Introduction

Isogeometric analysis (IGA), a numerical technique for the solution of partial
differential equations first proposed in Hughes et al. [2005], has attracted
considerable research attention in recent years. The use of spline spaces both
for representation of the geometry and for approximation of the solution
affords the method several very interesting features, such as the possibility
to use exactly the geometry generated by CAD systems, refinement without
further communication with the CAD system, the possibility of using high-
continuity trial functions, the use of high-degree spaces with comparatively
few degrees of freedom, and more. We refer to Hughes et al. [2005], Bazilevs
et al. [2006] as well as the monograph Cottrell et al. [2009] and the references
therein for details on this method.

The efficient solution of the discretized systems arising in isogeometric
analysis has been the topic of several publications, among these, Collier et al.
[2012], Kleiss et al. [2012], da Veiga et al. [2012], Gahalaut et al. [2013],
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da Veiga et al. [2013], Buffa et al. [2013]. In the present paper, we investigate
geometric full multigrid methods for IGA. It is known (Gahalaut et al. [2013])
that geometric multigrid solvers for IGA possess h-independent convergence
rates for V-cycle iteration using standard smoothers. Our aim is to study
more closely the performance of the full multigrid (FMG) iteration strategy,
especially in dependence of the spline degree.

2 Isogeometric analysis

We construct, in every direction i = 1, . . . , d, a B-spline space of degree pi
over an open knot vector which spans the parameter interval (0, 1). Open
means that the first and last knots are repeated pi + 1 times. We restrict
ourselves to maximum continuity, i.e., all knots in the interior are simple.
For the definition of B-splines, see, e.g., Schumaker [2007], Piegl and Tiller
[1997], Cottrell et al. [2009]. Taking the tensor product of the B-splines bases
over all directions i, we obtain a tensor product basis {Bj : (0, 1)d → R+

0 }j .
To each of its basis functions Bj , we associate a control point (coefficient)
Cj ∈ Rd in such a way that we obtain an invertible geometry mapping F =∑
j CjBj : (0, 1)d → Ω, where Ω ⊂ Rd is the computational domain. The

isogeometric basis functions on Ω are given by Bj ◦F−1 : Ω → R+
0 , and their

span is the isogeometric trial space on Ω.
In practice, NURBS, i.e., rational versions of the B-spline basis functions,

are commonly used to represent the geometry. In this paper, we however
restrict ourselves to the case of B-splines for the sake of simplicity.

In the following, let Vh ⊂ H1
0 (Ω) denote a tensor product spline space

over Ω as constructed above. An isogeometric method for the Poisson equa-
tion with Dirichlet boundary conditions is given by the discrete variational
problem: find uh ∈ Vh such that, for all vh ∈ Vh,∫

Ω

∇u · ∇v dx =: a(uh, vh) = 〈F, vh〉 :=

∫
Ω

fvh dx− a(g̃, v),

where g̃ ∈ H1(Ω) is a suitable extension of the Dirichlet data g. Here, uh + g̃
is the approximation to the solution of the boundary value problem.

Essential boundary conditions require some care in isogeometric methods.
In our setting, we construct an approximation gh to g which lies in the spline
space. Due to the use of open knot vectors, the degrees of freedom (DoFs) can
be cleanly separated into boundary DoFs and interior DoFs. The values for
the boundary DoFs of gh are determined by solving a (d−1)-dimensional La-
grange interpolation problem on each face of the patch Ω, where the Gréville
points of the spline basis are chosen as interpolation points. The interior DoFs
of gh are set to zero. In the variational setting, this corresponds to solving a
problem with the approximate right-hand side
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〈Fh, v〉 =

∫
Ω

fv dx− a(gh, v). (1)

On the topic of essential boundary conditions in isogeometric analysis, we
also refer to Wang and Xuan [2010], Mitchell et al. [2011], Chen et al. [2011].

3 Geometric multigrid methods for IGA

In the following, we outline very briefly the construction of a geometric multi-
grid scheme for IGA. We refer to the multigrid literature (Hackbusch [2003],
Briggs et al. [2000], Trottenberg et al. [2000]) for further details.

Starting from a coarse isogeometric mesh, inserting a new knot at the
midpoint of every non-empty knot span creates a “fine” spline space with a
halved mesh size which contains all functions of the original “coarse” spline
space, yielding the isogeometric analogue of uniform h-refinement.

Let V̂0 denote a coarse parametric spline space over (0, 1)d which is rich
enough to represent the geometry Ω exactly. With repeated uniform refine-
ment steps, we obtain a sequence of h-refined spline spaces V̂1, V̂2, . . . The
push-forward to the geometry yields isogeometric spline spaces V0,V1,V2, . . .

Let VH ⊂ Vh denote two successive spline spaces with the canonical em-
bedding P : VH → Vh. One step of the two-grid iteration process is given by
a pre-smoothing step, the coarse-grid correction, and a post-smoothing step.
Given a starting value u0 ∈ Vh, the next iterate u1 is thus obtained from

u(1) := u0 +M−1(fh −Ahu0),

u(2) := u(1) + PA−1H P>(fh −Ahu(1)),
u1 := u(3) := u(2) +M−>(fh −Ahu(2)).

Here, M is a suitable smoother for the fine-space stiffness matrix Ah. Com-
mon choices are the Richardson smoother (with M being a scalar multiple of
identity), the damped Jacobi smoother (M being a scaled diagonal of Ah),
and the Gauss-Seidel smoother (M being the lower triangular part of Ah).
A multigrid scheme is obtained by considering a hierarchy of nested spline
spaces and replacing the exact inverse A−1H in the above procedure recur-
sively with the same procedure applied on the next coarser space, until V0 is
reached, where an exact solver is used.

We set up a Poisson model problem, −∆u = f , with pure Dirichlet bound-
ary conditions on the d-dimensional unit interval Ω = (0, 1)d. We choose
tensor product B-spline basis functions defined on equidistant knot vectors
with constant spline degrees p1 = . . . = pd = p and maximum continuity.
The geometry mapping F is chosen as identity. The right-hand side f and
the boundary conditions are chosen according to the prescribed analytical
solution u(x) =

∏d
i=1 sin(π(xi + 0.5)).
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As a comparison point, we test the V-cycle iteration numbers. For this,
we choose a random starting vector u0 and perform V-cycle iteration until
the initial residual is reduced by a factor of 10−8 in the Euclidean norm.
The resulting iteration numbers are shown in Table 1. We point out that
very similar numbers have been obtained in Gahalaut et al. [2013]. In higher
dimensions, in particular for d = 3, the number of iterations sees a dramatic
increase as the spline degree is raised.

d N p d N p d N p

1 2 3 4 1 2 3 4 1 2 3 4

∼500 11 9 7 10 ∼4k 9 12 37 140 ∼6k 9 37 249 1935
1 ∼4.1k 11 8 7 9 2 ∼66k 9 11 37 127 3 ∼40k 9 38 240 1682

∼262k 11 8 7 9 ∼1.05m 9 11 36 125 ∼290k 9 38 236 1564

Table 1 V-cycle iteration numbers for the model Poisson problem. Columns, left to right:

space dimension d, number of unknowns N , V-cycle iteration numbers for p = 1 to 4.

4 Full multigrid for IGA

We set up a full multigrid (FMG) method in the usual way. That is, we start
from the exact coarse-grid solution u0 = A−10 f0 ∈ V0 and transfer it to the
next higher level by means of a full interpolation operator, u1 = I10 (u0). Here
the solution is corrected by one multigrid V-cycle with a suitable coarse-space
right-hand side fi, and the result is again interpolated to the next higher
level by means of I21 . This procedure is continued until the finest space V` is
reached, where one final V-cycle is applied. We found that two issues related
to the treatment of Dirichlet boundary conditions need attention.

First, we need a sequence of full interpolation operators Ii+1
i : Vi → Vi+1

which transfer solutions, as opposed to mere corrections, to the next finer level
while maintaining a high order of accuracy. Dirichlet boundary conditions
must be carefully taken into account here. Recall that the approximation to
the solution of the boundary value problem on level i is given by ui+gi, where
gi is a spline function approximating the Dirichlet boundary data having
non-zero coefficients only on the boundary DoFs, whereas ui vanishes on the
boundary DoFs since they were eliminated from the linear system. Prolonging
both contributions separately, we see that P i+1

i ui ∈ Vi+1 still vanishes on the
boundary DoFs. On the other hand, the representation of gi in Vi+1 has non-
zero contributions in some interior DoFs close to the boundary. This situation
is illustrated in the 1D setting in Figure 1. Therefore, the proper choice for
the full interpolation operator is Ii+1

i (ui) := P i+1
i ui+ P̊ i+1

i gi, where by P̊ i+1
i

we mean the operator which prolongs the boundary function and discards
the boundary DoFs, keeping only the contributions to the interior DoFs.
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Fig. 1 Prolongation of boundary functions creates non-zero contributions to interior DoFs

The second issue is related to the choice of the coarse-space right-hand
sides fi, i = 1, . . . , ` − 1. The seemingly natural choice fi = (P i+1

i )>fi+1

does not take into account that the right-hand side vector f` stems from the
approximated linear functional 〈Fh, ·〉 given in (1), where we have chosen a
fine-grid spline approximation gh for the Dirichlet data. This approximation
by necessity depends on the mesh level: the fine-grid Dirichlet functions must
have better approximation properties, but cannot be represented on coarser
grids. We thus found it necessary to assemble fi on every level separately.

With these issues taken care of, we apply a single FMG cycle to the Pois-
son model problem introduced in Section 3 for different values of the space
dimension d, the spline degree p and the problem size N and compute the re-
sulting L2-error with respect to the exact solution. The errors are presented
in Tables 2–4 for the 1D, 2D and 3D cases along with the error ratio be-
tween successive refinement levels. (In some cases, the errors stagnate once a
threshold sufficiently close to the machine accuracy is reached due to rounding
errors.) From the approximation properties derived in Bazilevs et al. [2006],
we would hope for an error which asymptotically behaves like O(hp+1). We
observe that this behavior is achieved using a single FMG cycle for all tested
spline degrees up to 4 in the 1D case, and for degrees up to 3 in the 2D and
3D cases. One possible measure to restore the optimal convergence orders in
the case p = 4 is to increase the number of pre- and postsmoothing steps.
In Table 5, we display the resulting errors with 2 smoothing steps in 2D and
with 3 smoothing steps in 3D.

We remark that the solution time using the FMG method was typically
only a small fraction of the time used to assemble the problems.
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p = 1 p = 2

N L2-error ratio N L2-error ratio

33 4.944858 · 10−4 4.76 34 3.722578 · 10−6 8.09
65 1.034253 · 10−4 4.78 66 4.646054 · 10−7 8.01

129 2.231043 · 10−5 4.64 130 5.808685 · 10−8 8.00

257 5.090763 · 10−6 4.38 258 7.263190 · 10−9 8.00
513 1.218115 · 10−6 4.18 514 9.081029 · 10−10 8.00

p = 3 p = 4

N L2-error ratio N L2-error ratio

35 6.536758 · 10−8 16.71 36 4.984064 · 10−9 34.42

67 3.966554 · 10−9 16.48 68 1.527129 · 10−10 32.64
131 2.439422 · 10−10 16.26 132 4.754326 · 10−12 32.12

259 1.512164 · 10−11 16.13 260 1.750396 · 10−13 27.16
515 9.883776 · 10−13 15.30 516 9.712425 · 10−14 1.80

Table 2 Errors after one full multigrid cycle in 1D.

p = 1 p = 2

N L2-error ratio N L2-error ratio

4225 1.76004 · 10−4 4.20 4356 4.8427 · 10−7 8.05
16641 4.28888 · 10−5 4.10 16900 6.0407 · 10−8 8.02

66049 1.05903 · 10−5 4.05 66564 7.5446 · 10−9 8.01

263169 2.63839 · 10−6 4.01 264196 9.4271 · 10−10 8.00
1050625 6.59801 · 10−7 4.00 1052676 1.1782 · 10−10 8.00

p = 3 p = 4

N L2-error ratio N L2-error ratio

4489 6.8025 · 10−9 17.47 4624 1.2380 · 10−9 28.05
17161 3.8527 · 10−10 17.66 17424 6.1208 · 10−11 20.23

67081 2.2387 · 10−11 17.21 67600 3.6698 · 10−12 16.68

265225 1.3527 · 10−12 16.55 266256 2.4967 · 10−13 14.70
1054729 2.6654 · 10−13 5.07

Table 3 Errors after one full multigrid cycle in 2D.

p = 1 p = 2

N L2-error ratio N L2-error ratio

125 7.2738 · 10−2 — 216 3.0617 · 10−3 —

729 1.2829 · 10−2 5.67 1000 2.0613 · 10−4 14.85

4913 3.2797 · 10−3 3.91 5832 2.4836 · 10−5 8.30
35937 7.9084 · 10−4 4.15 39304 3.5042 · 10−6 7.09

274625 1.9521 · 10−4 4.05 287496 4.3712 · 10−7 8.02

p = 3 p = 4

N L2-error ratio N L2-error ratio

343 4.5383 · 10−4 — 512 1.1096 · 10−4 —

1331 5.4518 · 10−5 8.32 1728 2.5938 · 10−5 4.28

6859 3.4414 · 10−6 15.84 8000 3.1818 · 10−6 8.15
42875 1.8704 · 10−7 18.40 46656 1.9189 · 10−7 16.58

300763 1.0657 · 10−8 17.55 314432 9.5155 · 10−9 20.17

Table 4 Errors after one full multigrid cycle in 3D.
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d = 2, ν = 2 N L2-error ratio

64 7.809885 · 10−5 —

144 4.964622 · 10−6 15.75
400 1.426569 · 10−7 34.80

1296 3.616898 · 10−9 39.44

4624 8.554892 · 10−11 42.28
17424 2.027914 · 10−12 42.19

67600 5.222339 · 10−14 38.83

266256 1.010133 · 10−13 0.52

d = 3, ν = 3 N L2-error ratio

512 6.282724 · 10−5 —

1728 3.377428 · 10−6 18.60
8000 1.116225 · 10−7 30.26

46656 2.372285 · 10−9 47.05

Table 5 Errors for p = 4 after one FMG cycle with ν pre- and postsmoothing steps.
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