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Abstract Some geometric and algebraic aspects of various domain decomposition
methods (DDMs) are considered. They are applied to a parallel solution of very large
sparse SLAEs resulting from approximation of multi-dimensional mixed boundary
value problems on non-structured grids. DDMs are used with parameterized over-
lapping of subdomains and various types of boundary conditions at the inner bound-
aries. An algorithm for automatic construction of a balancing domain decomposition
for overlapping subdomains is presented. Subdomain SLAEs are solved by a direct
or iterative preconditioned method in Krylov subspaces, whereas external iterations
are performed by the FGMRES method. An experimental analysis of the algorithms
is carried out on a set of model problems.

1 Introduction

The DDMs include a variety of geometric, algebraic, and functional aspects which
are aimed at a high performance solution of large-size problems on post-petaflop
computers.

Numerous works and Internet sites are devoted to this problem: monographs, pa-
pers, conference proceedings, programs, etc. [2], [3]. The issues that are of most
interest from the practical point of view are the requirements on high resolution of
the numerical approaches to solving multi-dimensional interdisciplinary boundary
value problems described by systems of partial differential equations (PDEs) or the
corresponding variational statements in the computational domains with compli-
cated piecewise smooth boundaries and contrasting material properties of their sub-
domains. Approximation of such problems by finite-volume or finite-element meth-
ods on nonstructured grids results in very large systems of linear algebraic equations

1)Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk,
Russia ·2) Novosibirsk State University

1



2 D.S.Butyugin, Y.L.Gurieva, V.P.Ilin, and D.V.Perevozkin

(SLAEs) with 108–1010 unknowns with ill-conditioned or nondefinite sparse matri-
ces with complicated portrait structures.

The solution to the SLAEs is a weak point of modern computing, and the DDMs
are the main tool providing scalable parallelizm on multi-processor and multi-core
systems. The goal of this paper is to experimentally investigate several approaches to
automatic construction of balancing grid subdomains and to parallel solution of the
resulting SLAE using the parametrized width of subdomain overlapping, different
internal boundary conditions, aggregation techniques, see, for example, [10]. The
results of a comparative analysis of the efficiency of various approaches for the
model problems are presented. The computations were carried out with the Krylov
library [5].

2 Grid domain decomposition without separator nodes

Let the matrix of the SLAE Au = f be split into P subsystems:

(Au)p = Ap,pup +
P

∑
q=1
q ̸=p

Ap,quq = fp, p = 1, ...,P, A = {ai, j} ∈RN,N , (1)

A = {Ap,q ∈RNp,Nq}, u = {up ∈RNp}, f = { fp ∈RNp}, p,q = 1, . . . ,P.

Assume that SLAE (1) is a system of grid equations approximating a multi-
dimensional boundary value problem for a differential equation, so that the com-
ponents of the vectors u, f correspond to a grid point, the total number of nodes

in the grid computational domain Ω h =
P∪

p=1
Ω h

p being equal to N. The block de-

composition of the matrix and vectors corresponds to the partitioning of Ω h into P
non-overlapping subdomains Ω h

p , each consisting of Np nodes, N1 + ...+Np = N.
The decomposition of Ω h does not use separator nodes, i.e., the boundaries of the
subdomains do not pass through the grid nodes.

The process of system (1) solving can be parallelized by the additive Schwarz
method:

Ap,pun
p = fp−

P

∑
q=1
q ̸=p

Ap,qun−1
q ≡ gn−1

p . (2)

The above matrix-algebraic representation of the structure of SLAE (1) can be
extended by introducing a graph describing the same problem. Each ith grid node
(or the ith row of the matrix A) can be associated with a vertex vi of a graph G, and
the mesh edge connecting the nodes i and j ∈Ω h, can be associated with the edge of
the graph G = (V,E), V = {vi; i = 1, ...,N}, E = {(vi,v j) |ai, j ̸= 0, i, j = 1, ...,N}.

Define an extended subdomain Ω̄ h
p ⊃ Ω h

p with overlapping, whose breadth is
defined in terms of the number of layers, or fronts, of the grid nodes.
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Let Γ 0
p ∈ Ω h

p denote a set of internal near-boundary nodes, i.e., nodes Pi ∈ Ω h
p ,

in which one of the neighbors does not lie in Ω h
p (Pj /∈ Ω h

p, j ∈ ωi, j ̸= i)). In Γ 0
p ,

define a subset of nodes Γ 0
p,q in which the neighboring nodes belong to the adjacent

subdomain Ω h
q ,q ∈ ω̄p, where ω̄p is a set of numbers of the subdomains adjacent to

Ω h
p . Thus, Γ 0

p =
∪

q∈ω̄p

Γ 0
p,q, and the subsets Γ 0

p,q may intersect, i.e. they can contain

near-boundary nodes with neighbors from different subdomains.
Let Γ 1

p denote a set of nodes adjacent to the nodes from Γ 0
p but not belonging

to Ω h
p and Γ 0

p ; and let Γ 2
p be a set of nodes adjacent to the nodes from Γ 1

p but
not belonging to the union Γ 1

p
∪

Ω h
p , etc. These sets will be called the first external

layer (front) of nodes, the second layer, etc., respectively. The resulting collection of
nodes Ω ∆

p = Ω h
p
∪

Γ 1
p ...

∪
Γ ∆

p will be called the extended pth grid subdomain, and
∆ , the extension breadth. The case ∆ = 0 actually means the decomposition of the
domain Ω h into subdomains without intersections (Ω 0

p = Ω h
p).

The set Γ ∆
p ∈ Ω ∆

p presents internal near-boundary nodes of the extended sub-
domain Ω ∆

p , and Γ ∆+1
p , a set of external near-boundary nodes. Thus the geometric

boundary of Ω ∆
p runs between Γ ∆

p and Γ ∆+1
p . Similarly to Γ 0

p , the set Γ ∆
p can be

partitioned into subsets of near-boundary nodes Γ ∆
p =Γ ∆

p,q1

∪
Γ ∆

p,q2
...

∪
Γ ∆

p,qmp
whose

neighboring nodes are located, respectively, in the subdomains Ω h
q1
,Ω h

q2
, ...,Ω h

qmp

(here mp denotes the number of subdomains that intersect Ω ∆
p , and q1,q2, ...,qmp

are the numbers of these subdomains).
Consider iterative process 2 for the equation corresponding to the ith near-

boundary node in Ω̄ h
p . Some of the neighbors belong to other subdomains Ω̄ h

q , q ̸= p
but do not belong to Ω̄ h

p:(
ai,i +θi ∑

j/∈Ω̄p

ai, j

)
un

i + ∑
j∈Ω̄p

ai, jun
j = fi + ∑

j/∈Ω̄p

ai, j(θiun−1
i −un−1

j ). (3)

Here θi ∈ [0,1] are parameters, corresponding for θi = 0 or θi = 1 to the Dirichlet
or Neumann boundary conditions, and for 0 < θi < 1, to the Robin condition.

Introduce matrices Āp,p ∈RN̄p,N̄p , Āp,q ∈RN̄p,N̄q for equation (3). Then the iter-
ative process can be transformed to the form

Āp,pūn
p = f̄p−

P

∑
q=1
q ̸=p

Āp,qūn−1
q ≡ ḡn−1

p . (4)

In the above discussion, we have considered the extension of the subdomain Ω h
p

towards its outer side. The same procedures are performed for the neighboring sub-
domains, which results in the construction of fronts inside Ω h

p . These procedures
can be implemented at the grid layers (fronts) in the extension of the neighboring
subdomains Ω h

q ,q ̸= p.
Formula (4) does not describe the iterative process exactly since N̄1 + ...+ N̄p ≥

N. The vector un can be determined by partitioning the unit:
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un
i = ∑

qi∈ω̄i

ηqi(ū
n
qi
)i, ∑

qi∈ω̄i

ηqi = 1, (5)

where ω̄i is a set of the extended subdomains Ω̄ h
qi

including the node Pi. Particular,
but important, cases in (5) are ηqi = 1 for Pi ∈Ω h

qi
and ηqi = 0 for Pi ̸= Ω h

qi
.

An alternative approach is to use iterations “in traces”. Let Γ̄p = Γ ∆
p

∪
Γ ∆+1

p de-
fine the trace of the extended subdomain Ω̄ h

p for θi ̸= 0,Pi ∈ Γ ∆
p , and Γ̄p = Γ ∆+1

p ,
for θi = 0. We can write Γ̄q =

∪
Γ̄q,p, where Γ̄p,q = Γ̄p

∩
Ω h

q . From 2 we have

ūn
p = Ā−1

p,p( f̄p−
P

∑
q=1
q ̸=p

Âp,qûn−1
p ). (6)

Here the matrices Āp,p are assumed to be non-singular, Âp,q ∈RN̄p,N̂p,q and ûp =

{ui;Pi ∈ Γ̄p,q} ∈RN̂p,q , N̂p,q being the number of nodes in Γ̄p,q.
If ūn

p → ūp for n→ ∞, iterations (6) provide the solution of the preconditioned
SLAE

Āu = f̄ , f̄ ∈RN , Ā ∈RN,N . (7)

Multiplying equation (6) by Āq,p and denoting Āp,qūn
q = Âp,qûn

q = vn
p,q ∈RN̄p , we

obtain the algebraic system “in traces”:

vq,p + Āq,pĀ−1
p,p

P

∑
q=1
q̸=p

vp,q = Āq,pĀ−1
p,p f̄p, p = 1, ...,P; q ∈ ω̄p. (8)

The degree of freedom of this SLAE is N̂ =
P
∑

p=1
N̂p =

P
∑

p=1
∑

q∈ω̄p

N̂p,q ≪ N. Itera-

tive solution of equation (8) can be implemented by a Krylov method. To speed up
the iterative DDM process, various approaches, for example, deflation, coarse grid
correction, and smoothed aggregation can be used. We consider the SLAE reduc-
tion procedure based on an interpolation principle, under the assumption of smooth
behavior of the solution to be sought for in each subdomain.

Define a prolongation matrix W T = {wp} ∈RN,P, where the vectors (columns)
wp have nonzero (unit) entries corresponding to the subdomain Ωp only. Then Â =
W T AW ∈ RP,P presents the global aggregation matrix, and B = WÂ−1W T is, in
a sense, an aggregating preconditioning matrix. For simplicity, we consider non-
overlapping subdomains. In this case, the matrix in (7) has a simple form Ā = BJA,
where BJ is the block Jacobi preconditioner [10].

DDM-exploiting iterative processes can be consructed in various ways. We use
a simple one, namely, the FGMRES [10] with dynamic preconditioner Bn: Bn = BA
for n = km+ 1, k = 0,1, . . ., and Bn = BJ otherwise. The stopping criteria of this
process are

||r̂n|| ≤ || f̂ − Âun|| ≤ εe|| f̂ ||, εe≪ 1, or n≤ ne
max. (9)
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Subdomain SLAEs are solved by either the direct solver PARDISO [4] or the
iterative BiCGStab method [10].

In the latter case of a two-level iterative algorithm, various approaches can be
chosen for defining the internal stopping criteria ε i ≤ εe and ni

max, similarly to (9).

3 Parallel Implementation of Algorithms

The major question in high-performance implementation of DDMs is automatic
construction of balancing grid subdomains, based, for instance, on CSR format of
the original SLAE. This problem is solved by the graph partitioning approach in two
stages. First, we define P subdomains Ω h

p , p = 1, . . . ,P, without intersections. Then
extended subdomains Ω̄ h

p with a given breadth ∆ of overlapping are constructed on
the basis of the following algorithm.

The non-overlapping grid subdomains Ω h
p are formulated as subgraphs Gp(Vp,Ep)

with possibly small diameters containing approximately equal numbers of vertices
Np ≈ N/P. In practice, the task consists in transforming the original CSR format to
the CSRp formats for P subdomains, which should be distributed among the corre-
sponding MPI processes.

The graph partitioning is a multi-level aggregation procedure of the sequential
macrographs G(l)(V (l),E(l)) = {G(l)

p (V (l)
p ,E(l)

p )}, l = 0,1...,L, p = 1, ...,Pl . Here
L and Pl are the number of levels and the number of macrovertices at the lth
level, respectively, whose macro-vertices include several vertices of a lower level.
If G(0)(V (0),E(0)) denotes the original grid graph, the first aggregation step can be
described by the following pseudocode (breadth-first search [8]):

i = 1,while {u ∈V |C(u) = 0} ̸= /0
pick any v f rom {u ∈V |C(u) = 0}
Q := {v} , n = 0
while (n < nmax and Q ̸= /0)

v← Q, C(v) := i
Q← (Ad j(v)∩{u ∈V |C(u) = 0})\Q
n = n+W (v)

end while
i = i+1

end while

Here C(u) and W (u) are the color and weight (integers) of the vertex u, respec-
tively, with the initial values C(u) = 0,W (u) = 1, Adj(v) is a set of vertices adjacent
to u, and Q is the stack type data structure. Hence, C(u) presents the number of a
subdomain (macrovertex) containing the vertex (grid point) u, and W (u) is the re-
sulting number of nodes in the subdomain (W (u)≤ nmax). This algorithm is repeated
for the levels l = 1, ...,L.
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Parallel implementation of DDM–FGMRES is performed using hybrid program-
ming with MPI processes on distributed memory for subdomains and OpenMP tools
for each of the multi-core processors with shared memory.

4 Numerical Experiments

We present the results of some numerical experiments on solving a model Dirich-
let boundary value problem for the 2D and the 3D Laplace equation in the unit
computational domain Ω = [0,1]d , d = 2,3, which is approximated by a standard
(2d+1)-point finite difference scheme on a square mesh (which is cubic in 3D) with
the degree of freedom N = Nd

x , for different values of Nx. The stopping criteria for
FGMRES without restarts were εe = 10−7 and ne

max = ∞. The exact solution and
initial guess for the iterations were taken equal to unit and zero, respectively. All
the experiments were carried out on the NKS-30T cluster [1] with standard double-
precision arithmetic.

Table 1 shows the efficiency of the proposed algorithm for automatic construction
of 3D balancing grid subdomains for P = 1,8,16,32,64. The subdomain SLAEs
were solved either by the direct method PARDISO from Intel MKL or by the pre-
conditioned BiCGStab method (Eisenstadt modification of incomplete factorization
[7]) with the parameters ε i = 0.1, ni

max = 5 (these values are nearly optimal for
the given problem data). Note that the PARDISO was run with 12 threads, whereas
the BiCGStab was implemented without any parallelization. In Table 1, the upper
and lower figures in each line correspond to grids with 1283 and 2563 unknowns,
respectively, and the left and right figures in each column present the numbers of
external iterations and execution time in seconds. In this case, the DDM parameters
∆ = θ = 0 were used.

Table 1 Comparative analysis of DDM without overlapping for direct
and iterative subdomain solvers, θ = 0,N = 1283,2563

method \P 1 8 16 32 64
1 885 53 30.1 75 20.4 108 12.6 130 18.1

direct
- - 72 332 102 212 142 138 169 189

18 64.9 68 20.5 92 12.5 103 13.0 197 11.9
iterative

18 606 99 296 132 203 197 139 262 115

Table 2 presents the number of iterations for the aggregation approach for the
same model SLAEs with the exact solution u= 1000+x+y and initial guess u0 = 0.
The aggregation preconditioner was used once every m steps (with m = 10 as an
optimal value). Note that the behavior is also observed for different numbers of
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subdomains, whereas the results are given here for P = 16 and 32 (upper and lower
cell values, respectively). The case m = 0 means solving without aggregation.

Table 2 Numbers of external iterations for solving SLAEs with aggregation preconditioning

N \m 0 1 5 10 15 20
82 50 46 41 42 46

1283 132 62 53 52 57 58
143 70 54 51 53 53

2563 193 60 72 61 62 68

In the other experiments, 2D problems were solved on square meshes with
N = 1282,2562, and P = 4,16,64 equal square subdomains. The systems in the
subdomains were solved by the PARDISO, and the external iterations were carried
out by the iterative BiCGStab method “in traces”.

Table 3 presents the iterative process versus the overlapping value ∆ . The cells
present the same data as in Table 1 for θ = 0, and N = 1282,2562 (upper and lower
lines in each row, respectively). We see that the number of iterations decreases
monotonically with increasing ∆ , but for the run time there is some minimum for a
sufficiently small value ∆ ≤ 4.

Table 3 Numerical results for different overlapping values ∆ , θ = 0, N = 1282,2562

P\∆ 0 1 2 3 4 5
18 1.75 11 1.45 9 1.37 7 1.26 7 1.26 6 1.20

4
27 6.85 16 4.37 12 3.51 10 3.02 9 2.82 8 2.49
32 1.42 18 1.18 14 1.19 12 1.09 11 0.89 9 0.79

16
41 3.85 24 2.83 20 2.20 17 1.80 14 1.38 14 1.66
43 1.56 26 1.66 19 1.39 16 1.50 14 1.56 12 0.86

64
60 4.75 36 4.16 27 3.35 22 3.11 20 3.00 18 4.66

Table 4 contains the number of iterations versus θ values. The left and right cell
values correspond to N = 1282 and N = 2562, respectively. No overlapping takes
place, i.e. ∆ = 0.

Table 4 Number of iterations for non-overlapping DDMs (∆ = 0) with different θ , N = 1282,2562

P\θ 0 0.5 0.6 0.7 0.9975
4 18 27 16 26 16 24 14 23 10 12

16 32 41 28 40 27 39 27 40 31 75
64 43 60 42 56 40 55 41 55 93 86
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These results demonstrate that the constant parameter θ is appropriate only for
a sufficiently small P. The experiments have also shown that for the overlapping
decomposition (∆ > 0) it is better to take θ = 0.

5 Conclusions

Our preliminary numerical results show that the DDMs considered have reasonable
efficiency. However, there are too many approaches needing systematic experimen-
tal investigation to construct high-performance code. This concerns, in particular,
the application of various optimized Schwarz methods [6], [9] with different val-
ues of parameter θ and coarse grid correction for overlapping or non-overlapping
DDM. Of course, the problem of creating an adapted environment for robust SLAE
solvers on modern supercomputers requires coordinated efforts of algebraists and
programmers.
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