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1 Introduction

In many practical applications in fluid dynamics, a very large range of scales
spanning many orders of magnitude are simultaneously present; one possi-
bility to perform an economical and accurate approximation of the solution
is to use different discretizations in different regions of the computational
domain to match with the physical scales. The mortar element method in-
troduced in Bernardi et al. [1994] allows such a use of different discretiza-
tions in an optimal way in the sense that the error is bounded by the sum
of the subregion-by-subregion approximation errors without constraint on
the choice of the different discretizations. An extension to fluids is given
in Achdou et al. [1998]. An alternative and simpler method, the New In-
terface Cement Equilibrated Mortar (NICEM) method proposed in Gander
et al. [2005] and analyzed in Japhet et al. [2013] for an elliptic problem, allows
to optimally match Robin conditions on non-conforming grids. An extension
to Ventcel conditions is given in Japhet et al. [2014]. The main feature of this
approach is that, on each side of the interface, the jump of the Robin or Vent-
cel condition should be L2-orthogonal to a well chosen finite element space
on the interface (in that case there is no master and slave sides, which makes
the method simpler). Thus, it allows to combine different approximations
in different subdomains in the framework of optimized Schwarz algorithms
which are based on optimized Robin or Ventcel transmission conditions and
lead to robust and fast algorithms (see Japhet [1998], Dubois [2007]).

In this paper we extend the NICEM method to advection-diffusion prob-
lems. For simplicity we consider the case of Robin conditions.
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We first introduce the problem at the continuous level: find u such that

ηu+∇ · (aaau)−∇ · (ν∇u) = f in Ω (1)

u = 0 on ∂Ω, (2)

where Ω is a C1,1 (or convex polygon in 2D or polyhedron in 3D) domain of
IRd, d = 2 or 3, and f is given in L2(Ω). We consider a decomposition of Ω

into K non-overlapping subdomains: Ω = ∪Kk=1Ω
k
, where Ωk, 1 ≤ k ≤ K

are either C1,1 or polygons in 2D or polyhedrons in 3D. We suppose that this
decomposition is geometrically conforming. Let nnnk be the outward normal
from Ωk. Let Γ k,` := ∂Ωk ∩ ∂Ω` denote the interface of two adjacent subdo-
mains. An optimized Schwarz algorithm with Robin transmission conditions
for problem (1)-(2) is

ηun+1
k +∇ · (aaaun+1

k )−∇ · (ν∇un+1
k ) = f in Ωk

un+1
k = 0 on ∂Ωk ∩ ∂Ω

Bk,`(un+1
k ) = Bk,`(un` ) on Γ k,`

where (Bk,`)1≤k,`≤K,k 6=` is the Robin transmission operator on the interface
between subdomainsΩk andΩ`: Bk,`ϕ = ν∂nnnϕ−aaa·nnnk

2 ϕ+αϕ with α > 0 given.
Following the ideas in Gander et al. [2005], Japhet et al. [2013], we need to
introduce a new independent entity representing the flux on the interface, in
order to match the Robin conditions on non-conforming grids, and thus the
method is of Petrov Galerkin type.

In Sect. 2 we introduce the method at the continuous level. Then in Sect. 3,
we present the method in the non-conforming discrete case. The numerical
analysis is given in Sect. 4. In Sect. 5 we give the discrete algorithm. In Sect. 6
we show simulations to illustrate the optimality of the method.

2 Definition of the problem

The variational statement of problem (1)-(2) is: Find u ∈ H1
0 (Ω) such that∫

Ω

(
ν∇u · ∇v + (η +

1

2
∇ · aaa)uv +

1

2

(
(aaa · ∇u)v − (aaa · ∇v)u

))
dx

=

∫
Ω

fvdx, ∀v ∈ H1
0 (Ω). (3)

We suppose that ν ≥ ν0 > 0 a.e. in Ω and η + 1
2∇ · aaa ≥ η0 > 0 a.e. in Ω.

Therefore problem (1)-(2) is coercive. We define the space H1
∗ (Ω

k) by

H1
∗ (Ω

k) = {ϕ ∈ H1(Ωk), ϕ = 0 over ∂Ω ∩ ∂Ωk}.
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In order to glue non-conforming grids with Robin conditions, denoting by v
the K-tuple (v1, ..., vK), we introduce the following constrained space,

V = {(v, q) ∈

(
K∏
k=1

H1
∗ (Ω

k)

)
×

(
K∏
k=1

H−1/2(∂Ωk)

)
,

vk = v` and qk = −q` over Γ k,`, ∀k, `}.

The following result is an extension of Lemma 1 in Japhet et al. [2013]:
problem (3) is equivalent to the following one: Find (u, p) ∈ V such that

K∑
k=1

∫
Ωk

(
ν∇uk · ∇vk + (η +

1

2
∇ · aaa)ukvk +

1

2

(
(aaa · ∇uk)vk − (aaa · ∇vk)uk

))
dx

−
K∑
k=1

H−1/2(∂Ωk) < pk, vk >H1/2(∂Ωk)=

K∑
k=1

∫
Ωk

fkvkdx, ∀v ∈
K∏
k=1

H1
∗ (Ω

k).

Being equivalent to the original problem, with pk = ν ∂u
∂nnnk
− aaa·nnnk

2 u over ∂Ωk

(recall that f is assumed to be in L2(Ω) so that ∂u
∂nnnk

actually belongs to

H−1/2(∂Ωk)), this problem is naturally well posed.
Let us describe the method in the non-conforming discrete case.

3 Non-conforming discrete formulation

We first introduce the discrete spaces. Each subdomain Ωk is provided with

its own mesh T kh , such that Ω
k

= ∪T∈T k
h
T, 1 ≤ k ≤ K. For T ∈ T kh , let hT be

the diameter of T and h the discretization parameter: h = max1≤k≤K hk with
hk = maxT∈T k

h
hT . We suppose that T kh is uniformly regular and that the sets

belonging to the meshes are of simplicial type (triangles or tetrahedra). Let
PM (T ) denote the space of all polynomials defined over T of total degree less
than or equal to M . The finite elements are of lagrangian type, of class C0.

We define on Ωk the spaces Y kh = {vh,k ∈ C0(Ω
k
), vh,k|T ∈ PM (T ), ∀T ∈

T kh } and Xk
h = {vh,k ∈ Y kh , vh,k|∂Ωk∩∂Ω = 0}. The space of traces over

each Γ k,` of elements of Y kh is denoted by Yk,`h . With each interface Γ k,`,

we associate a subspace W̃ k,`
h of Yk,`h in the same spirit as in the mortar

element method Bernardi et al. [1994] in 2D or Braess and Dahmen [1998],
Ben Belgacem and Maday [1999] for a P1-discretization in 3D.

More precisely, let T be the restriction to Γ k,` of the triangulation T kh . In

2D, T is one-dimensional with vertices xk,`0 , xk,`1 , ..., xk,`n−1, x
k,`
n and has two

end points xk,`0 and xk,`n . Then W̃ k,`
h is the subspace of Yk,`h of elements that

are polynomials of degree ≤M − 1 over both [xk,`0 , xk,`1 ] and [xk,`n−1, x
k,`
n ].
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In 3D, we suppose that all the vertices of the boundary of Γ k,` are con-
nected to zero, one, or two vertices in the interior of Γ k,`. We denote by V,
V0, ∂V the sets of all the vertices of T , the vertices in the interior of Γ k,`, and
the vertices on the boundary of Γ k,` respectively. Let S(T ) be the space of
piecewise linear functions with respect to T which are continuous on Γ k,` and
vanish on its boundary. Then S(T ) = span {Φa : a ∈ V0} where Φa, a ∈ V
are the finite element basis functions. For a ∈ V, let σa := {T ∈ T : a ∈ T}
denote the support of Φa, Na := {b ∈ V0 : b ∈ σa}, and N := ∪a∈∂VNa.
Let Tc be the set of triangles T ∈ T which have all their vertices on the
boundary of Γ k,`. For T ∈ Tc, we denote by cT the only vertex of T that has
no interior neighbor. Let Nc denote the vertices aT of N which belong to a
triangle adjacent to a triangle T ∈ Tc. We introduce Φ̂a defined as follows:
Φ̂a := Φa, a ∈ V0 \ N , Φ̂a := Φa+ =

∑
b∈∂V∩σa

Ab,aΦb, a ∈ N \ Nc, and

Φ̂a := ΦaT + =
∑
b∈∂V∩σaT

Ab,aTΦb +ΦcT , a = aT ∈ Nc. The weights are de-

fined by : Ac,a+Ac,b = 1 and |T2,b|Ac,a = |T2,a|Ac,b, for all c ∈ ∂V connected
to two interior nodes a and b, where T2,a (resp. T2,b) denote the adjacent
triangle to abc having a (resp. b) as a vertex and its two others vertices on
∂V. For all c ∈ ∂V connected to only one interior node a, the weights are
Ac,a = 1 (see Braess and Dahmen [1998]). The space W̃ k,`

h is then defined by

W̃ k,`
h := span {Φ̂a, a ∈ V0}. Then W̃ k

h :=
∏
`, Γk,` 6=∅ W̃

k,`
h .

We now define the discrete constrained space as follows:

Vh = {(uh, ph) ∈

(
K∏
k=1

Xk
h

)
×

(
K∏
k=1

W̃ k
h

)
,∫

Γk,`

((ph,k + αuh,k)− (−ph,` + αuh,`))ψh,k,` = 0, ∀ψh,k,` ∈ W̃ k,`
h , ∀k, `}.

The discrete problem is the following one : Find (uh, ph) ∈ Vh such that

K∑
k=1

∫
Ωk

(
ν∇uh,k · ∇vh,k + (η +

1

2
∇ · aaa)uh,kvh,k

))
dx

+

K∑
k=1

∫
Ωk

(
1

2

(
(aaa · ∇uh,k)vh,k − (aaa · ∇vh,k)uh,k

))
dx

−
K∑
k=1

∫
∂Ωk

ph,kvh,kds =

K∑
k=1

∫
Ωk

fkvh,kdx, ∀vh = (vh,1, ...vh,K) ∈
K∏
k=1

Xk
h .

(4)

4 Best approximation error

In this part we give best approximation results of (u, p) by elements in Vh
(see Japhet et al. [2013]). We define for any p in

∏K
k=1 L

2(∂Ωk) the norm



NICEM method for advection-diffusion problems 5

‖p‖− 1
2 ,∗

= (
∑K
k=1

∑K
`=1
` 6=k
‖pk‖2

H
− 1

2
∗ (Γk,`)

)
1
2 , where ‖.‖

H
− 1

2
∗ (Γk,`)

stands for the

dual norm of H
1
2
00(Γ k,`) (recall that H

1
2
00(Γ k,`) is the interpolated space of

index 1
2 between H1

0 (Γ k,`) and L2(Γ k,`), see Lions and Magenes [1968]).

Theorem 1. Let us assume that αh ≤ c, for some small enough constant c.
Then, the discrete problem (4) has a unique solution (uh, ph) ∈ Vh.

Assume that the solution u of (1)-(2) is in H2(Ω)∩H1
0 (Ω), and uk = u|Ωk ∈

H2+m(Ωk), with M − 1 ≥ m ≥ 0. Let pk,` = ν ∂u
∂nnnk
− aaa·nnnk

2 u on Γ k,`. Then,
there exists a constant c independent of h and α such that

‖uh − u‖∗ + ‖p
h
− p‖− 1

2 ,∗
≤ c(αh2+m + h1+m)

K∑
k=1

‖u‖H2+m(Ωk) (5)

+ c(
hm

α
+ h1+m)

K∑
k=1

∑
`

‖pk,`‖
H

1
2
+m(Γk,`)

.

Moreover, if pk,` = ν ∂u
∂nnnk
− aaa·nnnk

2 u is in H
3
2+m(Γk,`), with M − 1 ≥ m ≥ 0,

then there exists c independent of h and α such that

‖uh − u‖∗ + ‖p
h
− p‖− 1

2 ,∗
≤ c(αh2+m + h1+m)

K∑
k=1

‖u‖H2+m(Ωk) (6)

+ c(
h1+m

α
+ h2+m)| log h|

K∑
k=1

∑
`

‖pk,`‖
H

3
2
+m(Γk,`)

5 Discrete iterative algorithm

The discrete algorithm to solve problem (4) is defined as follows : let
(unh,k, p

n
h,k) ∈ Xk

h × W̃ k
h be a discrete approximation of (u, p) in Ωk at step n.

Then, (un+1
h,k , p

n+1
h,k ) is the solution in Xk

h × W̃ k
h of∫

Ωk

(
ν∇un+1

h,k ∇vh,k + (η +
1

2
∇ · aaa)un+1

h,k vh,k +
1

2

(
(aaa · ∇un+1

h,k )vh,k − (aaa · ∇vh,k)un+1
h,k

))
dx

−
∫
∂Ωk

pn+1
h,k vh,kds =

∫
Ωk

fkvh,kdx, ∀vh,k ∈ Xk
h , (7)∫

Γk,`

(pn+1
h,k + αun+1

h,k )ψh,k,` =

∫
Γk,`

(−pnh,` + αunh,`)ψh,k,`, ∀ψh,k,` ∈ W̃ k,`
h . (8)

Using Lemma 2 in Japhet et al. [2013], we can prove the convergence of the
iterative scheme

Theorem 2. Under the hypothesis of Theorem 1, the algorithm (7)-(8) is
well posed and converges in the sense that

lim
n−→∞

(‖unh,k − uh,k‖H1(Ωk) +
∑
6̀=k

‖pnh,k,` − ph,k,`‖
H

− 1
2

∗ (Γk,`)
) = 0, 1 ≤ k ≤ K.
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6 Numerical results

We consider a P1 finite element approximation. We study the numerical error
analysis for problem (4). We consider the initial problem with exact solution
u(x, y) = x3y2 + sin(xy), η = 1 and ν = 0.01. The domain is the unit square
Ω = (0, 1) × (0, 1). We decompose Ω into two non-overlapping subdomains
with meshes generated in an independent manner as shown on Fig. 1.

Fig. 1 Non-conforming meshes: mesh 2 (on the left), and mesh 3 (on the right)

The subdomain problems are solved using a direct solver. To observe the
numerical error estimates for the discrete problem (4), one need to compute
the converged solution of the algorithm (7)-(8) regardless of the algorithm
used to compute it. Thus it is the solution at convergence of the algorithm
(7)-(8) with a stopping criterion on the residual (i.e. the jumps of Robin
conditions) that must be extremely small, e.g. smaller than 10−14. The Robin
parameter α is obtained by minimizing the convergence factor (see Japhet
[1998], Dubois [2007]). For cases 1 and 2 below, this criterion is reached
with an average of 40 and 45 iterations respectively (note that with Ventcell
conditions, the number of iterations is almost independent of h (see Japhet
et al. [2014]) and is 20 (case 1) and 26 (case 2). The error curves with Ventcell
conditions are almost the same as the one on Fig.2 and Fig.3). Note that the
regularity of the normal derivative of u along the interfaces enters most of
the times in the frame of the error estimate (6) that allows a larger range of
choice for α, compatible with the above chosen optimized choice.

Case 1. In this test case we have considered a rotating velocity defined by:
aaa = (− sin(π(y− 1

2 )) cos(π(x− 1
2 )), cos(π(y− 1

2 )) sin(π(x− 1
2 ))), and four initial

meshes : meshes 1 to 4 where meshes 2 and 3 are the nonconforming meshes
shown on Fig. 1, and mesh 1 (resp. mesh 4) is a conforming mesh obtained
as the union of the coarse (resp. fine) sub-meshes of mesh 2 and mesh 3.
Figure 2 shows the relative H1 error versus the number of refinement for
these four meshes, and the mesh size h versus the number of refinement, in
logarithmic scale. At each refinement, the mesh size is divided by two. The
results of Figure 2 show that the relative H1 error tends to zero at the same
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rate than the mesh size, and this fits with the theoretical error estimates of
Theorem 1. On the other hand, we observe that the two curves corresponding
to the non-conforming meshes (meshes 2 and 3) are between the curves of
the conforming meshes (meshes 1 and 4). The relative H1 error for mesh 3 is
smaller than the one corresponding to mesh 2, and this is because mesh 3 is
more refined than mesh 2 in the subdomain where the solution steeply varies.
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Fig. 2 Case 1. Relative H1 error versus refinements for meshes 1-4.

Case 2. We consider a velocity built up from sets of vortices such that their
closest neighbors rotate in the opposite directions (Smolarkiewicz [1982]), as
shown on Fig. 3 (left) : aaa = 0.32π (sin(4πx) sin(4πy), cos(4πy) cos(4πx)) .
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Fig. 3 Case 2. Left: velocity field. Right: Relative H1 and L2 errors versus h for mesh 3.

On Fig. 3 (right) we plot the relative H1 error and the relative L2 error
versus the mesh size h, in logarithmic scale. We start from mesh 3 of Fig. 1
and then refine successively each mesh by dividing the mesh size by two. The
results show that the relative H1 (resp. L2) error tends to zero at the same
rate as the mesh size h (resp. h2).
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