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Abstract We present numerical results for a multigrid method employing over-
lapping Schwarz smoothers in various V-cycle configurations. The method is based
on finite element discretizations of the Stokes problem employing Hdiv-conforming
velocity spaces and matching pressure spaces. The method acts on the combined
velocity and pressure spaces and thus does not need a Schur complement approxi-
mation.

Key words: multigrid, smoother, overlapping Schwarz, discontinuous Galerkin
methods, divergence-conforming

1 Introduction

The efficient solution of the Stokes equations is an important step in the develop-
ment of fast flow solvers. The saddle point structure due to the divergence constraint
makes the solution process more complicated. Block preconditioners are often em-
ployed, but their performance is limited by the inf-sup constant of the problem and
by the difficulty of finding a good preconditioner for the pressure Schur comple-
ment. This could be avoided, if the multigrid method operated on the divergence
free subspace directly. Recently in Kanschat and Mao [2014], we introduced and
analyzed a multigrid method with an additive overlapping Schwarz smoother. The
main ingredients of our method are a smoother which implicitly operates on the di-
vergence free subspace and a grid transfer operator from coarse to fine mesh which
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maps the coarse divergence free subspace into the fine one. In this contribution here,
we now employ the multiplicative version of this Schwarz method and present nu-
merical results for it.

We consider discretizations of the Stokes equations with no-slip boundary con-
ditions

−4u + ∇p = f in Ω ,
∇·u = 0 in Ω ,

u = uB on ∂Ω ,
(1)

on a bounded domain Ω ⊂ Rd of dimension d = 2,3. The natural solution spaces
for this problem are V = H1

0 (Ω ;Rd) for the velocity u and the space of mean value
free square integrable functions Q = L2

0(Ω) for the pressure p. We point out that
other well-posed boundary conditions do not pose a problem.

In order to obtain a finite element discretization, we partition the domain Ω into
a hierarchy of meshes {T`}`=0,...,L of parallelogram and parallelepiped cells in two
and three dimensions, respectively. By F` we denote the set of all faces of the mesh
T`. The set F` is composed of the set of interior faces Fi

` and the set of all boundary
faces F∂

` .
In order to discretize (1) on the mesh T`, we choose discrete subspaces X` =V`×

Q`, where Q` ⊂Q. FollowingCockburn et al. [2007], we employ discrete subspaces
V` of the space Hdiv

0 (Ω), where

Hdiv(Ω) =
{

v ∈ L2(Ω ;Rd)
∣∣∇·v ∈ L2(Ω)

}
,

Hdiv
0 (Ω) =

{
v ∈ Hdiv(Ω)

∣∣v·n = 0 on ∂Ω
}
.

On each mesh cell T , we choose the Raviart–Thomas Raviart and Thomas [1977]
space of degree k with k ≥ 1, mapped by the Piola transformation if necessary and
denoted by VT . We point out that any pair of velocity spaces V` and pressure spaces
Q` is admissible, if the key relation

∇·V` = Q` (2)

holds. We obtain the finite element spaces

V` =
{

v ∈ Hdiv
0 (Ω)

∣∣∀T ∈ T` : v|T ∈VT
}
,

Q` =
{

q ∈ L2
0(Ω)

∣∣∀T ∈ T` : q|T ∈ QT
}
.

1.1 Discontinuous Galerkin discretization

While the fact that V` is a subspace of Hdiv
0 (Ω) implies continuity of the normal

component of its functions across interfaces between cells, this is not true for tan-
gential components. Thus, V` 6⊂ H1(Ω ;Rd), and it cannot be used immediately to
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discretize (1). We follow the example in for instance Cockburn et al. [2007] and
apply a DG formulation to the discretization of the elliptic operator. Here, we focus
on the interior penalty methodArnold [1982]. Let T1 and T2 be two mesh cells with
a joint face F , and let u1 and u2 be the traces of a function u on F from T1 and T2,
respectively. On this face F , we introduce the averaging operator

{{u}}= u1 +u2

2
. (3)

Using the notation, that every integral form over a set of mesh cells or faces is the
sum of the integrals over all objects in the set, the interior penalty bilinear form
reads

a`(u,v) =(∇u,∇v)T`
+4〈σL{{u⊗n}},{{v⊗n}}〉Fi

`

−2〈{{∇u}},{{n⊗ v}}〉Fi
`
−2〈{{∇v}},{{n⊗u}}〉Fi

`

+2〈σLu,v〉F∂
`
−〈∂nu,v〉F∂

`
−〈∂nv,u〉F∂

`
.

(4)

The operator “⊗” denotes the Kronecker product of two vectors. We note that the
term 4{{u⊗n}} : {{v⊗n}} actually denotes the product of the jumps of u and v.

The discrete weak formulation of (1) reads now: find (u`, p`)∈V`×Q`, such that
for all test functions v` ∈V` and q` ∈ Q` there holds

A`

((
u`
p`

)
,

(
v`
q`

))
≡ a`(u`,v`)+(p`,∇·v`)− (q`,∇·u`) = F (v`,q`)≡ ( f ,v`) .

(5)

Discussion on the existence and uniqueness of such solutions can be found for
instance in Cockburn et al. [2002]. Here, we summarize, that a`(., .) is symmetric
and, if σL is sufficiently large, it is positive definite. Thus, we can define a norm on
V` by ∥∥v`

∥∥
V`
=
√

a`(v`,v`). (6)

In order to obtain optimal convergence results, σL is chosen as σ/hL, where hL
is mesh size on the finest level L and σ is a positive constant depending on the
polynomial degree. A key result in the convergence analysis of this discretization as
well as in the analysis of the additive Schwarz smoother is the inf-sup condition

inf
v∈V`

sup
q∈Q`

(q,∇·v)∥∥v
∥∥

V`

∥∥q
∥∥

Q`

≥ γ` > 0 (7)

where γ` = c
√

hL
h`

= c
√

2`−L and c is a constant independent of the grid level `.
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2 Multigrid method

In this section we define a V-cycle multigrid preconditioner B` for the operator A`.
We define the action of the multigrid preconditioner B` : X` → X` recursively as
the multigrid V-cycle with m(`) ≥ 1 pre- and post-smoothing steps. Let R` be a
suitable smoother. Let B0 = A −1

0 . For ` ≥ 1, define the action of B` on a vector
L` = ( f`,g`) by

1. Pre-smoothing: begin with (u0, p0) = (0,0) and let(
ui
pi

)
=

(
ui−1
pi−1

)
+R`

(
L`−A`

(
ui−1
pi−1

))
i = 1, . . . ,m(`), (8a)

2. Coarse grid correction:(
um(`)+1
pm(`)+1

)
=

(
um(`)

pm(`)

)
+B`−1I

t
`−1

(
L`−A`

(
um(`)

pm(`)

))
, (8b)

3. Post-smoothing:(
ui
pi

)
=

(
ui−1
pi−1

)
+R`

(
L`−A`

(
ui−1
pi−1

))
, i = m(`)+2, . . . ,2m(`)+1

(8c)

4. Assign:

B`L` =

(
u2m(`)+1
p2m(`)+1

)
(8d)

We distinguish between the standard V-cycle with m(`) = m(L) and the variable
V-cycle with m(`) = m(L)2L−`, where the number m(L) of smoothing steps on the
finest level is a free parameter. We refer to BL as the V-cycle preconditioner of AL.
The iteration (

uk+1
pk+1

)
=

(
uk
pk

)
+BL

(
LL−AL

(
uk
pk

))
(9)

is the V-cycle iteration.

2.1 Overlapping Schwarz smoothers

In this subsection, we define a class of smoothing operators R` based on a subspace
decomposition of the space X`. Let N` be the set of vertices in the triangulation T`,
and let T`,υ be the set of cells in T` sharing the vertex υ . They form a subdivision
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of Ω with N overlapping subdomains (also called patches) which we denote by
{Ω`,υ}N

υ=1.
The subspace X`,υ = V`,υ ×Q`,υ consists of the functions in X` with support in

Ω`,υ . Note that this implies homogeneous slip boundary conditions on ∂Ω`,υ for the
velocity subspace V`,υ and zero mean value on Ω`,υ for the pressure subspace Q`,υ .
The Ritz projection P`,υ : X`→ X`,υ is defined by the equation

A`

(
P`,υ

(
u`
p`

)
,

(
v`,υ
q`,υ

))
= A`

((
u`
p`

)
,

(
v`,υ
q`,υ

))
∀
(

v`,υ
q`,υ

)
∈ X`,υ . (10)

Note that each cell belongs to no more than four (eight in 3D) patches T`,υ , one for
each of its vertices.

We recall the additive Schwarz smoother

Ra,` = η ∑
υ∈N`

P`,υA −1
`

where η ∈ (0,1] is a scaling factor, R` is L2 symmetric and positive definite. In Kan-
schat and Mao [2014], it was shown based on arguments from Arnold et al. [1997],
Schöberl [1999], that this smoother yields a uniformly convergent multigrid method
if η is chosen appropriately.

Here, we use the symmetric multiplicative Schwarz smoother Rm,` associated
with the spaces X`,υ , defined by

Rm,` = (I −E`)A
−1
` ,

E` =
(
I −P`,1

)
. . .
(
I −P`,N

)
. . .
(
I −P`,1

)
.

We proved uniform convergence for the variable V-cycle iteration with the smoother
Ra,` in Kanschat and Mao [2014] and showed its efficiency by numerical exper-
iments. Since standard arguments from domain decomposition theory like stable
decomposition and strengthened Cauchy-Schwarz inequalities are used, we conjec-
ture that the analysis applies to the multiplicative version in the usual fashion. We
note that the use of the variable V-cycle is induced by the level dependence of the
inf-sup condition (7). Since optimality of this estimate has not been established, we
study standard cycles as well.

3 Numerical results

We present numerical results for the multiplicative Schwarz method in various V-
cycle methods and different solvers in order to show that the contraction numbers
are not only bounded away from one, but are actually small enough to make this
method very efficient. The following results were produced using the deal.II li-
brary Bangerth et al. [2007, 2015] and its multigrid capabilities Janssen and Kan-
schat [2011].



6 Guido Kanschat and Youli Mao

m(`) = 2L−` m(`) = 1 m(`) = 2
L RT1 RT2 RT3 RT1 RT2 RT3 RT1 RT2 RT3
3 5 5 5 5 5 5 3 3 3
4 6 6 7 6 6 7 5 5 5
5 6 6 6 6 6 7 5 5 6
6 5 5 6 6 6 7 5 5 6
7 5 5 6 7 7 7 5 5 6
8 5 5 6 7 7 7 6 6 6

Table 1 Number of iterations n8 to reduce the residual by 10−8 with the variable V-cycle and
the standard V-cycle iteration with one and two pre- and post-smoothing steps. Penalty parameter
dependent of the finest level mesh size 21−L.

variable standard
level RT1 RT2 RT3 RT1 RT2 RT3

3 6 6 6 6 6 6
4 6 6 6 6 6 7
5 6 6 6 6 6 7
6 5 5 6 6 6 7
7 5 5 6 6 6 7
8 5 5 6 6 6 7

Table 2 Penalty parameter dependent on the mesh size of each level. Number of iterations n8 to
reduce the residual by 10−8 with variable and standard V-cycle iterations with m(L) = 1.

The experimental setup for most of the tables is as follows: the domain is Ω =
[−1,1]2, the coarsest mesh T0 consists of a single cell T = Ω . The mesh T` on level
` is obtained by dividing all cells in T`−1 into four quadrilaterals by connecting the
edge midpoints. Thus, a mesh on level ` has 4` cells, and the length of their edges is
21−`. The right hand side is f = (1,1).

In Table 1, we first study convergence of the linear multigrid method (precondi-
tioned Richardson iteration) with the multiplicative Schwarz smoother using a vari-
able V-cycle algorithm on a square domain with no-slip boundary condition. The
penalty constant in the DG form (4) is chosen as σ̄/hL, where σ̄ = (k+1)(k+2),
on the finest level L and all lower levels `. Results for pairs of RTk/Qk with orders
k between one and three are reported in the table which show the fast and uniform
convergence. On the right of this table, we keep the same experimental setup and
present iteration counts for the standard V-cycle algorithm with one and two pre-
and post-smoothing steps, respectively. Although not proven for this case, we still
observe uniform convergence results. We also see that the variable V-cycle with a
single smoothing step on the finest level is as fast as the standard V-cycle with two
smoothing steps, and thus the variable V-cycle is more efficient.

In Table 2, we test the variable and standard V-cycles with penalty parameters
depending on the mesh level `, namely σ̄/h` (where σ̄ is a positive constant de-
pending on the polynomial degree) in the DG form (4). This is the typical situation
when the operators are assembled independently on each grid level.

In Table 3, we provide results with GMRES solver and BL as preconditioner for
experimental setups as in Tables 1 and 2, respectively. The second to fourth columns
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variable standard noninherited
level RT1 RT2 RT3 RT1 RT2 RT3 RT1 RT2 RT3

3 2 2 2 2 2 2 3 3 3
4 3 3 4 4 4 4 5 5 5
5 5 5 5 5 5 5 5 5 5
6 4 4 5 5 5 5 5 5 5
7 4 4 5 5 5 5 5 5 5
8 5 4 5 5 5 5 5 5 5

Table 3 Number of iterations n8 to reduce the residual by 10−8 with GMRES solver and precondi-
tioner BL; variable and standard V-cycle with inherited forms, variable V-cycle with noninherited
forms. One pre- and post-smoothing step on the finest level.

Richardson GMRES
level RT1 RT2 RT1 RT2

2 1 1 1 1
3 5 5 4 4
4 6 5 4 4
5 6 5 4 4

Table 4 Three-dimensional domain. Number of iterations n8 to reduce the residual by 10−8 with
the variable V-cycle algorithm with penalty parameter dependent of the finest level mesh size.

are results for the variable V-cycle with penalty parameter dependent of the finest
level mesh size. The fifth and seventh columns are the results for the standard V-
cycle with penalty parameter dependent of the finest level mesh size. The last three
columns are the results for the standard V-cycle with penalty parameter depend on
the mesh size of each level. From this table, we see that the GMRES method, as
expected, is faster in every case.

In Table 4, we provide results in three dimensions for variable V-cycle methods
with the same penalty parameter as we choose in Table 1. We keep the similar
experimental setups: domain Ω = [−1,1]3 and right hand side f = (1,1,1). We
observe the similar fast and uniform convergence performance as in two dimensions.

We finish our experiments by applying our method to a non-simply connected
domain. We choose a square with a square hole, namely the domain Ω = [−1,1] \
[− 1

3 ,
1
3 ]. The coarse grid on level ` = 0 consists of the squares of the form [−1+

2i
3 ,−1 + 2i+2

3 ]× [−1 + 2 j
3 ,−1 + 2 j+2

3 ] with 0 ≤ i, j ≤ 2, and with the index pair
(i, j) = (1,1) missing. We note that the Hodge decomposition in this case is more
complicated due to the presence of a harmonic form. Nevertheless, the results with
the multiplicative Schwarz method in Table 5 exhibit the same performance we
observed in the simply connected case.
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Richardson GMRES
level RT1 RT2 RT1 RT2

2 6 6 4 4
3 6 6 4 4
4 6 6 4 4
5 5 5 4 4
6 5 5 4 4
7 5 5 4 4

Table 5 Number of iterations n8 to reduce the residual by 10−8, different finite element orders and
solvers on the domain with hole [−1,1]2 \ [−1/3,1/3]2
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