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1 Introduction

We describe a BDDC algorithm, see e.g., Dohrmann [2003], and an adaptive
coarse space enforced by a transformation of basis for the iterative solution of
scalar diffusion problems with a discontinuous diffusion coefficient. The coef-
ficient varies over several orders of magnitude both inside of the subdomains
and along the interface. A related algorithm for FETI-DP with a balancing
preconditioner has been already described in Klawonn et al. [2013b,a]. Other
adaptive coarse space constructions for FETI, FETI-DP, and BDDC meth-
ods have been proposed in Spillane and Rixen [2013], Mandel and Soused́ık
[2007]. We also present some preliminary numerical results for different scal-
ings, including the recent deluxe scaling; cf., Dohrmann and Widlund [2013].

We consider the following model problem. Let Ω ⊂ R
2 be a bounded poly-

hedral domain. We subdivide ∂Ω into a subset of positive measure ∂ΩD where
Dirichlet boundary conditions are imposed and ∂ΩN = ∂Ω \ ∂ΩD where
general Neumann boundary conditions are prescribed. Define the Sobolev
space H1

0 (Ω, ∂ΩD) = {v ∈ H1(Ω) : v = 0 on ∂ΩD} and consider the piece-
wise linear finite element approximation of the scalar diffusion problem: Find
u ∈ H1

0 (Ω, ∂ΩD), such that a(u, v) = f(v) holds for all v ∈ H1
0 (Ω, ∂ΩD).

The bilinear form a(u, v) and the functional f(v) are defined by

a(u, v) =

∫

Ω

ρ(x)∇u∇v dx and f(v) =

∫

Ω

fv dx +

∫

∂ΩN

gNv ds,
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where gN is the Neumann boundary data on ∂ΩN . The model problem is
discretized with linear finite elements. We assume ρ(x) to be positive and
piecewise constant on Ω and constant on single elements of the triangulation.

The remainder of the paper is organized as follows. We describe the trans-
formation of basis which is performed in our BDDC algorithm to introduce
additional coarse constraints in Section 2. The characterization how these
constraints are chosen via the solution of local eigenvalue problems and an
overview over our theoretical results is given in Section 3. For a more detailed
analysis, see Klawonn et al. [2013b]. In Section 4 we consider some examples
and present numerical results.

2 Transformation of Basis and Scaling in the BDDC

algorithm

As a domain decomposition method we use BDDC. Due to space limitation,
for a description of the algorithm and the notation, we refer the reader to
Klawonn et al. [2008]. Given a set of primal vertex variables, in the next
section, we describe a way to obtain adaptively additional primal variables
in the form of weighted edge averages. To implement these edge averages,
we transform our local stiffness matrices K(i) and right hand sides f (i) with
a transformation matrix T (i). The resulting transformed stiffness matrices

K
(i)

= T (i)TK(i)T (i) and right hand sides f
(i)

= T (i)T f (i) then replace K(i)

and f (i) in the BDDC algorithm; see, e.g., Klawonn et al. [2008] for more de-
tails. We construct the transformation matrices T (i) edge by edge. Consider
an edge E of Ωi and the restriction of T (i) to this edge, denoted by TE. Sup-
pose we have selected a set of weighted edge averages with weights described

by orthonormal column vectors {v
(i)
E,1, . . . , v

(i)
E,m}. We augment this set to an

orthonormal basis {v
(i)
E,1, . . . , v

(i)
E,m, v

(i)
E,m+1, . . . , v

(i)
E,nE

} of RnE , where nE de-
notes the number of nodes of the edge E. The transformation matrix TE is

defined by TE = [v
(i)
E,1, . . . , v

(i)
E,m, v

(i)
E,m+1, . . . , v

(i)
E,nE

] and describes the change
of basis from the new to the original nodal basis. The first m columns of
TE correspond to the new additional primal variables and the remaining
columns correspond to the new dual unknowns. Denoting the edge unknowns
in the new basis by ûE and the unknowns in the original basis by uE , we

have uE = TEûE . We denote by T
(i)
E the transformation matrix which oper-

ates on all edges of ∂Ωi. The transformation matrix T (i) is then defined by

T (i) = diag(II , IV , T
(i)
E ), where II and IV denote the identity on inner vari-

ables and on vertex variables, respectively. The transformed stiffness matrices
are of the form
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T (i)TK(i)T (i) =




K
(i)
II K

(i)
IV K

(i)
IET

(i)
E

K
(i)
V I K

(i)
V V K

(i)
V ET

(i)
E

T
(i)T
E K

(i)
EI T

(i)T
E K

(i)
EV T

(i)T
E K

(i)
EET

(i)
E


 ,

with right hand sides T (i)T f (i) = [f
(i)T
I f

(i)T
V f

(i)T
E T

(i)
E ]T . We can now per-

form our BDDC algorithm with the transformed problem; see, e.g., Klawonn
et al. [2008] for a detailed desription. In our algorithm we will use two differ-
ent scalings. Let ϕi be the nodal finite element function associated with the
node xi and define ρ̂j(xi) = maxT∈supp(ϕi)∩Ωj

ρj|T (xi). Our scaling weights

are now defined as δ†j (x) = ρ̂j(x)/
∑

k∈Nx
ρ̂k(x), where Nx is the set of in-

dices of the subdomains that have the node x on their boundary. The scaling
matrices D(j) are diagonal matrices in this case with the weights δ†j (x) on
the diagonal. This approach is usually referred to as ρ-scaling. We consider
another scaling variant, also known as deluxe scaling, see e.g., Dohrmann

and Widlund [2013]. In this case the restriction D
(k)
Eij

of D(k) to an edge Eij

is defined by D
(k)
Eij

= (S
(i)
EijEij

+ S
(j)
EijEij

)−1S
(k)
EijEij

, k = i, j, where S
(k)
EijEij

is

the restriction of S(k) to the edge Eij after the transformation of basis.

3 Choice of Weighted Edge Averages

In the following we will consider two different eigenvalue problems to compute
weighted edge averages for our algorithm; see also Klawonn et al. [2013b]. The
first eigenvalue problem is a replacement for the weighted Poincaré inequali-
ties in the case of non-quasimonotone coefficient functions; see Klawonn et al.
[2013b,a]. The second is related to an extension theorem; see Klawonn et al.

[2013b]. For a common edge Eij of the subdomains Ωi and Ωj we define S
(l)
Eij,ρ

,
l = i, j, as the Schur complement which is obtained after eliminating all vari-
ables of K(l) except of the variables on the closure of Eij , denoted by E ij . We

define the mass matrix (M
(l)
Eij ,ρ

)pq :=
∫
Eij

ρlϕpϕqds, p, q = 1, . . . , nEij
, where

nEij
denotes the number of degrees of freedom on E ij and ϕp is the nodal finite

element basis function associated with a node xp ∈ E ij . We also introduce

the bilinear forms s
(l)
Eij ,ρ

(u, v) := uTS
(l)
Eij ,ρ

v and m
(l)
Eij,ρ

(u, v) := uTM
(l)
Eij,ρ

v.

If the coefficient ρ(x) of the diffusion problem varies over several orders of
magnitude inside of subdomains and over the interface of the decomposition
and is non-quasimonotone the constant in the Poincaré inequality is polluted
by the contrast of the coefficient. For a definition of quasimonotone coeffi-
cients and a detailed analysis of weighted Poincaré inequalities, see Pechstein
and Scheichl [2013]. The Poincaré constant also appears in the bound of the
condition number estimate of substructuring methods equipped with a clas-
sical coarse space, e.g., a coarse space consisting of vertices and standard
edge averages only. To circumvent this problem we introduce a generalized
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eigenvalue problem to compute new weighted averages which will be used
to enhance our coarse space. Note, that related eigenvalue problems are also
used in Galvis and Efendiev [2010] and in Dolean et al. [2012] in the context
of overlapping Schwarz methods. However, our approach is more local. We
denote the finite element trace space on Eij by Wh(Eij).

Eigenvalue Problem 1 (EVP 1) Find (u
(i)
k , µ

(i)
k ) ∈ Wh(Eij)×R such that

s
(i)
Eij ,ρ

(u
(i)
k , v) = µ

(i)
k m

(i)
Eij ,ρ

(u
(i)
k , v) ∀v ∈ Wh(Eij). (1)

For L ∈ {1, . . . , nEij
}, where nEij

is the number of degrees of freedom on E ij ,
and for l = i, j we introduce the projection

I
Eij ,(l)
L =

L∑

k=1

m
(l)
Eij ,ρ

(u
(l)
k , v)u

(l)
k , l = i, j,

with the eigenvectors u
(l)
k of Eigenvalue Problem 1. The next lemma provides

a generalized Poincaré inequality and is needed to estimate weighted L2-
norms of projected finite element functions on edges; for a proof, see Klawonn
et al. [2013b].

Lemma 1. For v ∈ Wh(Eij) and w :=
(
v − I

Eij ,(l)
L v

)
∈ Wh(Eij), we have

||v − I
Eij ,(l)
L v||2L2

ρl
(Eij)

= m
(l)
Eij,ρ

(w,w) ≤
1

µ
(l)
L+1

s
(l)
Eij ,ρ

(v, v) (2)

and s
(l)
Eij ,ρ

(w,w) ≤ s
(l)
Eij ,ρ

(v, v). (3)

In our BDDC coarse space we will enforce the equality of the projected

functions I
Eij ,(i)
L v(i) = I

Eij ,(i)
L v(j) and I

Eij ,(j)
L v(i) = I

Eij ,(j)
L v(j) on the in-

terface. We cannot directly enforce this equality, but instead we guarantee

that m
(l)
Eij ,ρ

(u
(l)
k , v

(i)
Eij

) = m
(l)
Eij ,ρ

(u
(l)
k , v

(j)
Eij

), for k = 1, .., L, by a transformation

of basis. To do so, we first build M
(l)
Eij,ρ

u
(l)
k and discard the entries related to

primal vertices. Then, this vector defines those columns of the local transfor-

mation matrices T
(i)
E and T

(j)
E which are related to the corresponding primal

variable in the new basis. We choose all eigenvectors of Eigenvalue Problem 1
whose corresponding eigenvalues satisfy µ ≤ τµ with a chosen tolerance τµ.

To guarantee that certain extensions can be bounded with constants in-
dependent of coefficient jumps, we introduce a second eigenvalue problem.

Eigenvalue Problem 2 (EVP 2)

s
(j)
Eij,ρj

(v, wκ) = ν(i)κ s
(i)
Eij ,ρi

(v, wκ), κ = 1, . . . , nEij
. (4)
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Remark 1. If ker(s
(j)
Eij ,ρj

) = ker(s
(i)
Eij ,ρi

), instead of solving Eigenvalue Prob-

lem 2 on range(s
(j)
Eij ,ρj

), we solve

ΠS
(j)
Eij ,ρj

Πw = ν
(
ΠS

(i)
Eij ,ρi

Π + σ
(
I −Π

))
w,

where σ is any positive constant and Π is an orthogonal projection onto

range(s
(i)
Eij ,ρi

). In our computations we have chosen σ as the maximum di-

agonal entry of ΠS
(i)
Eij,ρi

Π . The right-hand side of this problem is positive

definite; see also Mandel and Soused́ık [2007].

We introduce a second projection operator

Π
(l)
K v :=

K∑

k=1

s
(l)
Eij ,ρ

(w
(l)
k , v)w

(l)
k , l = i, j,

with K ∈ {1, . . . , nEij
} and obtain the following lemma; see Klawonn et al.

[2013b] for a proof.

Lemma 2. We have ∀w(j) ∈ Wh(Eij)

s
(i)
Eij,ρi

(
w(j) −Π

(i)
K w(j), w(j) −Π

(i)
K w(j)

)
≤

1

ν
(i)
K+1

s
(j)
Eij ,ρj

(
w(j), w(j)

)
.

To take advantage of Lemma 2 we need to introduce a second set of primal

constraints of the form Π
(i)
K w(i) = Π

(i)
K w(j) and Π

(j)
K w(i) = Π

(j)
K w(j). For

both generalized eigenvalue problems 1 and 2 we introduce tolerances to de-
cide which eigenvectors are chosen to enhance our coarse space. Additionally
to the eigenvectors of Eigenvalue Problem 1 we choose all eigenvectors of
Eigenvalue Problem 2 whose corresponding eigenvalues satisfy ν ≤ τν . with
a chosen tolerance τν .

Definition 1. By an η-patch ω ⊂ Ω we denote an open set which can
be represented as a union of shape regular finite elements and which has
diam(ω) ∈ O(η) and a measure of O(η2). Let Eij ⊂ ∂Ωi be an edge. Then, a

slab Ω̃iη is a subset of Ωi of width η with Eij ⊂ ∂Ω̃iη which can be represented

as the union of η-patches ωik, k = 1, . . . , n, such that E
(k)
ij := (∂ωik∩Eij)◦ 6= ∅,

k = 1, . . . , n.

For each edge Eij let Ω̃iη ⊂ Ωi be a slab of width η, such that Eij ⊂ ∂Ω̃iη. Let

ωik ⊂ Ω̃iη, k = 1, . . . , n, be a set of η-patches such that Ω̃iη = ∪n
k=1ωik, and

the coefficient function ρi|ωik
= ρik is constant on each ωik. Let ωik ∩ωil = ∅,

k 6= l. We obtain the following condition number estimate which is proven
in Klawonn et al. [2013b].

Theorem 1. The condition number for our BDDC algorithm satisfies
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κ(M−1
BDDC

S) ≤ C
(
1 + log

( η
h

))2 1

νK+1

(
1 +

1

ηµL+1

)
.

Here, C > 0 is a constant independent of H, h, and η and

1

µL+1
= max

k=1,...,N

{
1

µ
(k)
Lk+1

}
,

1

νK+1
= max

{
1, max

k=1,...,N

1

ν
(k)
K+1

}
.

4 Numerical Results

We now present a few numerical examples that support our theory. We choose
Ω = [0, 1]2 with Dirichlet boundary conditions on ∂Ω and a constant right
hand side f = 0.1. The coefficient distributions are depicted in Fig. 1. Alg. A
corresponds to a FETI-DP method using only vertex constraints. In Tab. 1
we vary the number of elements for each subdomain. In Tab. 2 we vary
the coefficient in the channels. In both cases the coefficient distribution is
symmetric with respect to the interface, and thus the extension from EVP 2
is not needed. Indeed, the results in Tab. 1 and 2 support that EVP 1 is
sufficient, here. In Tab. 3 we vary the number of subdomains. In Tab. 4 we
apply the adaptive method using EVP 1 for the coefficient distribution in
Fig. 1 (middle) using standard ρ-scaling and deluxe scaling. The coefficient
distribution is mildly unsymmetric and a good condition number is obtained
using only EVP 1. This is different for Fig. 1 (right); see Tab. 5. Here, EVP 2
seems to be necessary. It interesting to note that, in Tab. 5, using deluxe
scaling a relatively low condition number can be obtained using Alg. A. This
is not the case in Tab. 4.
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Fig. 1 Coefficient distribution for 3 × 3 domain decomposition: Three channels (left),
two shorter and displaced channels (middle), three shorter and displaced channels (right).
Black corresponds to a high coefficient ρ = 1e+ 06, white corresponds to ρ = 1.
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Algorithm A Adaptive Method Adaptive Method

(τµ = −∞, τν = −∞) EVP 1 (τµ = 1) EVP 1+2 (τµ = 1, τν = 1e− 01)
H/h cond its # primal cond its # primal cond its # primal

14 1.227e05 13 4 1.0387 2 24 1.0387 2 24
28 1.545e05 17 4 1.1507 3 24 1.1507 3 24
42 1.730e05 16 4 1.2471 3 24 1.2462 4 28
56 1.861e05 16 4 1.3272 3 24 1.3272 3 24
70 1.962e05 16 4 1.3954 3 24 1.3954 5 28

Table 1 Three channels for each subdomain; see Figure 1 (left). We have ρ1 = 1e06 in the
channel, and ρ2 = 1 elsewhere. The number of additional constraints is clearly determined
by the structure of the heterogeneity and independent of the mesh size. 1/H = 3.

Algorithm A Adaptive Method Adaptive Method

(τµ = −∞, τν = −∞) EVP 1 (τµ = 1) EVP 1+2 (τµ = 1, τν = 1e− 01)
ρ2/ρ1 cond # its # primal cond # its # primal cond # its # primal

1e00 3.207 5 4 1.6376 5 8 1.6376 5 8
1e01 5.581 7 4 1.5663 7 8 1.5663 7 8
1e02 1.998e+ 01 9 4 1.4599 7 12 1.4567 7 16
1e03 1.591e+ 02 10 4 1.1505 4 24 1.1505 4 32
1e04 1.550e+ 03 13 4 1.1507 3 24 1.1476 4 31
1e05 1.545e+ 04 15 4 1.1507 3 24 1.1507 3 28
1e06 1.545e+ 05 17 4 1.1507 3 24 1.1507 3 24

Table 2 Three channels for each subdomain; see Figure 1 (left). Adaptive method using
Eigenvalue Problem 1+2. We have ρ2 in the channels, and ρ1 = 1 elsewhere. H/h = 28.
The number of additional constraints is bounded for increasing contrast ρ2/ρ1. 1/H = 3.

Algorithm A Adaptive Method Adaptive Method

(τµ = −∞, τν = −∞) EVP 1 (τµ = 1) EVP 1+2 (τµ = 1, τν = 1e− 01)
1/H cond # its # primal cond # its # primal cond # its # primal

2 1 1 1 1.0000 1 1 1.0000 1 1

3 1.545e+ 05 17 4 1.1507 3 24 1.1507 3 24
4 2.734e+ 05 26 9 1.1507 3 51 1.1502 4 59
5 3.475e+ 05 65 16 1.1507 3 88 1.1507 3 90
6 4.078e+ 05 65 25 1.1507 3 135 1.1507 3 152

Table 3 Three channels for each subdomain; see Figure 1 (left). Increasing number of
subdomains and channels. We have ρ2 = 1e06 in the channels, and ρ1 = 1 elsewhere.
H/h = 28.

Algorithm A Adaptive Method

(τµ = −∞, τν = −∞) EVP 1 (τµ = 1)

ρ-scaling Deluxe ρ-scaling Deluxe
H/h cond its cond its # primal cond its cond its # primal

10 6.201e4 25 6.200e4 20 4 1.1480 6 1.1421 5 24
20 7.684e4 25 7.683e4 20 4 1.1978 7 1.1948 6 24
30 8.544e4 25 8.544e4 23 4 1.2630 7 1.2618 6 24

Table 4 Adaptive method for the coefficient distribution in Figure 1 (middle). 1/H = 3.
Deluxe scaling and standard ρ-scaling is used.
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Multiplicity-scaling Deluxe-scaling
τµ τν H/h cond # its cond # its # primal

Alg. A −∞ −∞ 42 2.492e5 161 24.4261 17 4

EVP 1 1 −∞ 42 2.496e5 128 9.760e4 40 24

EVP 1+2 1 1/10 42 1.5184 10 1.4306 9 126

Table 5 Adaptive method for the heterogenous problem from the image in Figure 1 (right)
with a coefficient of 106 (black) and 1 (white) respectively. 1/H = 3. Either multiplicity
or deluxe scaling are used.

.
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