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1 Introduction

Domain decomposition methods are subject to a greater interest, due to ob-
vious implication for parallel computing. Non-overlapping methods are par-
ticularly well suited for coupled problems through an interface as bonded
structures (e.g., Geymonat et al. [1998]) air/water flows (e.g., Bresch and
koko [2006]), two-body contact problems (e.g., Haslinger et al. [2014], Koko
[2008b]), etc. For these coupled problems, the domain decomposition methods
applied in a natural way, since the sub-domains are already defined.

Two types of domain decomposition methods exist for bonded structures:
Lagrangian (dual) methods (Bresch and Koko [2004]) and least-square meth-
ods (Geymonat et al. [1998], Koko, J. [2002]). In Lagrangian methods, the
objective functional is the energy functional and the constraint is the solution
jump across the interface. In least-square methods, the original problem is
reformulated as a constrained minimization problem for which the objective
functional controls the solution jump across the interface. The constraints
are the partial differential equations stated in each sub-domain with suit-
able boundary conditions. In a comparative study, Koko [2008a] shows that
the least-square methods solve twice as many linear systems than the dual
methods. But both methods fail if one of the subdomains allows rigid-body
motions.

The paper is organized as follows. In Section 2 we present the simplified
model of bonded structures. The Uzawa block relaxation domain decompo-
sition algorithm is described in Section 3. Some numerical experiments are
carried out in Section 4.
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2 Model problem

We adopt the model problem described in Koko [2008a]. To simplify, we
present a model problem with two subdomains. A generalization to more
than two subdomains is straightforward.

Consider a system of two isotropic elastic bodies each of which occupies,
in the reference configuration, a bounded domain Ωi in R2 (i = 1, 2). Both
elastic bodies are bonded along their common boundary S, assumed to be a
nonempty surface of positive measure. Hooke’s law is assumed for each elastic
body, i.e.

σiαβ(ui) = 2µiεαβ(ui) + λitr(ε(ui))I2, α, β = 1, 2,

where ε(ui) = (∇ui + ∇uTi )/2, λi ≥ 0 and µi > 0 denote Lamé constants.
Let ui be the displacement field of the body Ωi. We set u = (u1, u2) the
displacement field of the bonded structure and [u] = (u1 − u2)|S the relative
tangential displacement along S. The simplified model of bonded structures
we study in this paper can be formulated as follows

−divσi(ui) = fi in Ωi, (1)

ui = 0 on Γi = ∂Ωi \ S, (2)

σi(ui) · ni = (−1)iK[u] on S, (3)

where ni is the unit outward normal to Ωi, and K is the second order bond-
ing tensor assumed to be symmetric and coercive with bounded coefficients.
Equation (3) is the transmission condition for u1 and u2. The domain decom-
position algorithms are (generally) parallel iterative procedures on (1)-(2)
that tend to satisfy the transmission condition (3).

Fig. 1 Bonded structure :

Ω1 and Ω2 the sub-domains
(adherents), S the interface

(thin adhesive layer)

Ω1

Ω2

S

Let us introduce the subspaces Vi =
{
v ∈ H1(Ωi); v = 0 on Γi

}
, V =

V1 × V2 and the notations, for ui, vi ∈ Vi

ai(ui, vi) =

∫
Ωi

σi(ui)ε(vi) dx, (4)

(ui, vi)Ωi =

∫
Ωi

uivi dx and (ui, vi)Γi =

∫
Γi

uivi dΓi. (5)
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With the above notations, the total potential energy of the simplified model
of a bonded structure we study is

F (v) = J(v) +
1

2
(K[v], [v])S ∀(v1, v2) ∈ V1 × V2 (6)

where

J(v) =
1

2

2∑
i=1

ai(vi, vi)−
2∑
i=1

(fi, vi)Ωi .

The bonded structure problem can now be formulated as the following min-
imization problem.

Find u ∈ V such that

F (u) ≤ F (v), ∀v ∈ V. (7)

The functional J is convex and coercive (see, e.g., Ciarlet [1988]) on V .
Since K is symmetric and coercive, it follows that F is convex and coercive
on V . Consequently, the minimization problem (7) has a unique solution.

In the method proposed by Bresch and Koko Bresch and Koko [2004], the
objective functional is the energy functional and the constraint is the solu-
tion jump across the interface. With the use of the Lagrangian functional,
the resulting domain decomposition algorithm is of Uzawa type, precisely
its conjugate gradient version. In the method proposed in Geymonat et al.
[1998], Koko, J. [2002], the original problem is reformulated as a constrained
minimization problem for which the objective functional controls the solution
jump across the interface. The constraints are the partial differential equa-
tions stated in each sub-domain with suitable boundary conditions. Both
methods fail if one of the subdomain allows rigid-body motions.

3 Augmented Lagrangian domain decomposition

Let us introduce the auxiliary interface unknowns qi = vi|S so that the energy
funcional (6) becomes

F (v, q) = J(v) +
1

2
(K[q], [q])S ∀(v, q) ∈ V ×H,

where H = L2(S)2. We then replace the unconstrained minimization problem
(7) by the following (equivalent) constrained minimization problem

Find (u, p) ∈ V ×H such that

F (u, p) ≤ F (v, q) ∀(v, q) ∈ V ×H, (8)

ui = pi on S, i = 1, 2. (9)
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With (8)-(9), we associate the augmented Lagrangian functional

Lr(v, q;µ) = F (v, q) +

2∑
i=1

(
(µi, vi − qi)S +

r

2
‖ vi − qi ‖2L2(S)

)
; (10)

where r > 0 is the penalty parameter. The saddle-point problem for the
augmented Lagrangian functional is

Find (u, p, λ) ∈ V ×H ×H such that:

Lr(u, p, µ) ≤ Lr(u, p, λ) ≤ Lr(v, q, λ) ∀(v, q, µ) ∈ V ×H ×H (11)

The functional Lr is Gâteaux-differentiable on V ×H ×H, then the solution
of (11) is characterized by the saddle-point (Euler-Lagrange) equations of the
primal and dual problems as follows

Find (u, p, λ) ∈ V ×H ×H such that

∂Lr
∂u

(u, p, λ) · v = 0, ∀v ∈ V, (12)

∂Lr
∂p

(u, p, λ) · q = 0, ∀q ∈ H (13)

∂Lr
∂λ

(u, p, λ) · µ = 0, ∀µ ∈ H. (14)

Subdomain problems in u are uncoupled if the multipliers λ and the co-
ordination variable p are known. We can use this property through a Uzawa
algorithm associated with a block relaxation method.

Uzawa block/relaxation methods have been used in nonlinear mechanics
for operator-splitting methods (see e.g. Glowinski and Le Tallec [1989]). The
idea is to minimize successively in u and p, in block Gauss-Seidel fashion. Ap-
plying a Uzawa block relaxation method to (12)-(14) we obtain the following
algorithm, assuming p0 and λ0

uk+1 = arg min
v
Lr(v, pk, λk), (15)

pk+1 = arg min
q
Lr(uk+1, q, λk), (16)

λk+1 = λk + r(uk+1 − pk+1). (17)

The minimization subproblem (15) is equivalent to the uncoupled subdo-
main problems

ai(u
k+1
i , vi)+r(uk+1

i , vi)S = fi(vi)+(rpki −λki , v), ∀vi ∈ Vi, i = 1, 2 (18)

while (16) leads to the point-wise interface subproblem
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(K + rI)pk+1
1 −Kpk+1

2 = λk1 + ruk+1
1 , (19)

−Kpk+1
1 + (K + rI)pk+1

2 = λk2 + ruk+1
2 . (20)

Gathering the results above, we obtain the Uzawa block relaxation method
presented in Algorithm 1. We iterate until the relative error on (uk, pk) be-
comes sufficiently small.

Remark 1. The problem (18) always has a unique solution even without the
Dirichlet condition (2). This property is useful for solving problems allowing
rigid body motions.

Remark 2. Algorithm 1 is equivalent to the operator-splitting standard algo-
rithm ALG 2 described in, e.g., [Glowinski and Le Tallec, 1989, ch. 3], applied
to the minimization problem (8)-(9). Since F is convex and coercive and the
constraints (9) are linear, the convergence of Algorithm 1 is guaranteed by,
e.g., [Glowinski and Le Tallec, 1989, theorem 3.4].

Algorithm 1 Uzawa block relaxation algorithm for a bonded structure

Initialization. p0, λ0 and r > 0 are given

Iteration k ≥ 0. Compute successively uk+1, pk+1 and λk+1 as follows

1. Compute uk+1
i ∈ Vi such that

ai(u
k+1
i , vi) + r(uk+1

i , vi)S = fi(vi) + (rpki − λki , vi)S , ∀vi ∈ Vi, i = 1, 2.

2. Compute (pk+1
1 , pk+1

2 ) ∈ H such that

(K + rI)pk+1
1 −Kpk+1

2 = λk1 + ruk+1
1

−Kpk+1
1 + (K + rI)pk+1

2 = λk2 + ruk+1
2

3. Update Lagrange multipliers: λk+1
i = λki + r(uk+1

i|S − p
k+1
i ), i = 1, 2.

The discrete version of Algorithm 1 is straightforward using the finite
element method (or the finite difference scheme). The only condition is the
meshes compatibility on S. Assuming that Ωih is a triangulation of Ωi, the
meshes are compatible on S in the sense that Ω̄1h ∩ S = Ω̄2h ∩ S.

The uncoupled elasticity subproblems (18) lead to linear systems with sym-
metric positive definite matrices. Since these matrices do not change during
the iterative process, a Cholesky factorization can be performed once and for
all in the initialization step. Then forward/backward substitutions are per-
formed in the rest of the iterative process. If a preconditioned iterative solver
is used for solving (18), an incomplete factorization is performed once and
for all in the initialization step.

The (linear) interface subproblem (19)-(20) is solved point-wise. At each
point we have to invert a small size matrix (4 × 4 in 2D or 6 × 6 in 3D).
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We can therefore use a semi-analytical solution for (19)-(20). Indeed, direct
Gaussian elimination yields to

pk+1
1 = (K2

r − I)−1K−1
(
Kr(λ

k
1 + ruk+1

1 ) + λk2 + ruk+1
2

)
pk+1
2 = Krp

k+1
1 −K−1(λk1 + ruk+1

1 ),

where we have set Kr = I + rK−1. The size of K is 2× 2 in 2D and 3× 3 in
3D and in many applications, K is a diagonal matrix.

4 Numerical experiments

Algorithm 1 was implemented in MATLAB 7 on a Linux workstation with
2.67 GHz clock frequency and 12 GB RAM. The test problem used is designed
to illustrate the numerical behavior of the algorithm more than to model
actual bonded structures. Setting z = (u, p), the stopping criterion is

‖ zk − zk−1 ‖L2< 10−6 ‖ zk ‖L2 . (21)

We are interested in the bonded structure of Figure 2, made from three
isotropic (linear) elastic bodies. The subdomains are Ω1 = (0, 20)× (5, 10)∪
(0, 20) × (−10, 5) and Ω2 = (0, 60) × (−5, 5). The interface is therefore
S = (0, 20)× {5} ∪ (0, 20)× {−5}. The material constants of the adherents
are E1 = 5× 104 MPA, ν1 = 0.3, E2 = 2.5× 104 MPA and ν2 = 0.3.

Ω1

S

σ2(u2) · n2 = −100n2

u1=0

Ω2S

u1=0
Ω1

Fig. 2 Geometry of the bonded structure, n2 = (1, 0)T .

The material constants of the adhesive layer are E∗ = 1800MPA, ν∗ = 0.35,
ν̃ = 2(1− ν∗)/(1− 2ν∗)

K =
E∗

2(1 + ν∗)
diag (ν̃, 1)

Remark 3. Since the subproblem over Ω2 allows rigid body motions, pure
Lagrangian (Bresch and Koko [2004], Koko [2008a]) and least square methods
(Geymonat et al. [1998], Koko [2008a], Koko, J. [2002]) are not applicable.

The bonded structure is first modeled by a uniform mesh consisting of
2×121 nodes and 2×224 triangles (for Ω1) and 723 nodes and 1344 triangles



Domain Decomposition Method for Bonded Structures 7

for Ω2,with 2× 15 nodes on S. We use piecewise linear finite element spaces.
Applying Algorithm 1 with the penalty parameter r = 1500, (21) is satisfied
after 27 iterations. Figure 3 shows the Von Mises effective stress distribution
inside the tree-body system.

Fig. 3 Deformed configuration and Von Mises effective stress (magnification factor 20).

Augmented Lagrangian type algorithms are very sensitive to the choice
of the penalty (or augmentation) parameter r. Figure 4 shows the number
of iterations versus the penalty parameter r. The optimal penalty value is
r ≈ 1300. Choosing smaller or larger values for r increases the number of
iterations without improving the final result.

Fig. 4 Number of iterations versus penalty parameter

To study the scalability of our algorithm, we report in Table 1 the iteration
count for different interface mesh sizes. We can notice that the iteration
count is virtually independent of interface mesh size, for the chosen number
of subdomains.
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Number of interface nodes 2×11 2×21 2×41 2×81 2×161

Number of iterations 27 27 27 27 27

Table 1 Number of iterations versus interface mesh size with r = 1500, chosen indepen-
dently of the mesh size.

5 Conclusion

We have studied a Uzawa block relaxation method for bonded structures.
The method is easy to implement and numerical experiments show that the
number of iterations is virtually independent of the mesh size for a fixed num-
ber of adherents. Even though the domain decomposition method proposed
converges for any r > 0, choosing automatically the ”optimal” value of the
penalty parameter is still an open question.
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