
A Massive Parallel Fast Marching Method

Petr Kotas1, Roberto Croce2, Valentina Poletti2, Vit Vondrak1, and Rolf
Krause2

1 Department of Applied Mathematics, VSB-Technical University of Ostrava, CZ
708 33 Ostrava-Poruba, Czech Republic {petr.kotas, vit.vondrak}@vsb.cz

2 Institute of Computational Science, University of Lugano, CH-6904 Lugano,
Switzerland {roberto.croce, rolf.krause, valentina.poletti}@usi.ch

1 Introduction

In this paper we present a novel technique based on domain decomposition
which enables us to perform the fast marching method (FMM) [Sethian(1996)]
on massive parallel high performance computers (HPC) for given triangulated
geometries. The FMM is a wildely used numerical method and one of the
fastest serial state-of-the-art techniques for computing the solution to the
Eikonal equation.

For clarification we define an open set Ω = ΩI ∪ ΩE ∪ Γ ⊂ R2(or R3)
where ΩI is the interior and ΩE the exterior of the domain enclosed by Γ and
the bounding box itself, as shown in Fig. 1. Then the resulting problem for
the Eikonal equation reads as the following boundary value formulation

|∇T (x)|F (x) = 1 for x ∈ Ω,
T |Γ = 0, (1)

T (x) > 0 for x ∈ ΩE and T (x) < 0 for x ∈ ΩI .

with F (x) as speed function. The solution to this problem with F (x) = 1
leads to the well-known signed distance function T with respect to Γ .

Signed distance functions are indispensable in varied fields such as seismic
imaging, approximation of geodesic distances and computational fluid dy-
namics [Sethian(1999)]. Hence, finding a fast solution method for the Eikonal
equation is of high interest. Several attempts lead to different approaches for
a fast and reliable solver. Among various techniques are iterative schemes,
expanding box schemes, expanding wavefront schemes, and sweeping schemes
[Jeong and Whitaker(2007)].

Though the FMM is a very efficient algorithm of complexity O(N log N),
its major drawback is that it cannot be easily parallelized due to its inherently
serial nature. Attempts to parallelize it either modify its underlying scheme,
losing some of its agility, or have limited scalability. Nevertheless various au-
thors tried to achieve a faster and more efficient scheme.

2 Authors Suppressed Due to Excessive Length

Fig. 1. Set-up of the Eikonal equation problem.

In [Weber et al.(2008)Weber, Devir, Bronstein, Bronstein, and Kimmel] a
modification of the FMM algorithm is introduced to make it parallelizable.
The implementation relies heavily on memory shareability, and the max-
imal number of processes is limited by the size of the updating stencil.
Other authors have relied on different schemes all together, such as level set
methods or variations thereof [Herrmann(2003), Jeong and Whitaker(2007),
Tugurlan(2008)]. The speed-up gained by the scalability of these methods
comes at the loss of serial algorithmic efficiency as the complexity of the un-
derlying algorithms is higher.

In this paper we will present a parallel algorithm for the computation
of the FMM on distributed memory machines via MPI. Another strength of
our parallel algorithm is that inter-processsor communication does not ex-
ist during the parallel FMM computation, each core is basically computing
independently the level-set function on its subdomain. This is possible, be-
cause each subdomain computes accurate boundary values for its local dataset
before starting the parallel FMM.

The remainder of this paper is organized as follows: The sequential fast
marching method is shortly explained in section 2 and our extensions towards
a Massive Parallel Fast Marching Method (MPFMM) are presented in section
3. Finally, we present several numerical results in section 4 which investi-
gate the performance of the new MPFMM-algorithm. We conclude with some
remarks in section 5. Finally, notice that a more extensive version of this paper
can be found as ICS-preprint [Croce et al.(2013)Croce, Kotas, Krause, and Poletti].

2 Sequential Fast Marching Method (SFMM)

The Fast Marching Method [Sethian(1996), Sethian(1999)] is designed to effi-
ciently solve the Eikonal equation (1). To do so, the FMM uses the first order
Godunov scheme to aproximate the gradient term |∇T (x)|, thus the Eikonal
equation is given as

F (x)

max(D−x
ijkT (x),−D+x

ijkT (x), 0)2+

max(D−y
ijkT (x),−D+y

ijkT (x), 0)2+

max(D−z
ijkT (x),−D+z

ijkT (x), 0)2


1
2

= 1 (2)

where D−ijk is the first order backward and D+
ijk the first order forward finite

difference operator. The equation (2) utilizes the upwind technique for approx-

A Massive Parallel Fast Marching Method 3

Algorithm 1 Sequential Fast Marching Method (SFMM).

1: Compute the distance T (x) to all node values that are directly adjacent to the interface and
tag them as accepted. Tag all nodes adjacent to these accepted nodes as narrow nodes and
all others as away nodes.

2: Compute T (x) of all narrow nodes via equation (1), treating T (x) in any adjacent narrow or
away node as ∞. Set the loop index n = 1.

3: repeat
4: Mark as accepted the narrow node i, j, k with the smallest T (x) value, denoted by T (x)n =

T (x)i,j,k.
5: Mark all away nodes adjacent to T (x)i,j,k as narrow.
6: Recompute the T (x) values of all narrow nodes adjacent to T (x)i,j,k by equation (1),

treating T (x) in any adjacent narrow or away node as ∞.
7: Set n = n + 1.
8: until All nodes are taged as accepted

imating the Eikonal equation (1). This works, because the front Γ propagates
forward and visits each cell only once.

In the core of the FMM there are three lists preserving the state of each cell
in the computation domain. Nodes marked as accepted are nodes for which
the singed distance function has already been computed. Nodes within the
vicinity of known nodes are marked narrow band and are updated according
to equation (2). Finally, nodes with unknown distance are marked as away.
The complete and easy to follow description of FMM algorithm is given by
Sethian in his book [Sethian(1999)].

3 Massive Parallel Fast Marching Method (MPFMM)

A few existing strategies for parallelizing the FMM exist, with varying level of
success. The simplest approach is to split the interface in two disjoint regions
and to run the FMM on both of them at once. This method however lacks
larger parallelism and it cannot achieve ideal load-balancing. To overcome this
problem another natural approach of decomposing the computational region
into a group of sub regions was studied in [Tugurlan(2008)]. This implementa-
tion utilizes the strategy of overlapping domain decomposition. To exchange
the boundary information an iterative update strategy is used. The overall
algorithm is designed in an iterative fashion, since after the boundary update,
the FMM needs to be re-run on each sub-domain. This process repeats until
convergence is achieved. Finally, methods decomposing the computational do-
main in such a way that each sub-domain contains part of the initial interface
are shown for instance in [Núnez(2011)]. With this strategy global minima
need to be exchanged in each FMM run, therefore the algorithm is not en-
tirely parallel in nature. Furthermore, none of the existing methods is able to
provide reasonable scalability and performance needed by large datasets.

In our approach we use domain decomposition with a combination of exact
boundary conditions on each sub-domain. Our decomposition scheme does
not require the initial interface to be present in each sub-domain, however the
exact distance between the initial interface and the sub-domain boundaries is

4 Authors Suppressed Due to Excessive Length

Algorithm 2 Parallel Fast Marching Method (MPFMM).

1: Divide the given gridded domain into N sub-domains D0, D1, ...DN

2: On each domain Di chose initial points on the local narrow band around the geometry and
on the domain boundary.

3: Load balance initial data points among domains.
4: Compute the initial data in parallel on each domain using closest point projection to trian-

gulated geometry.
5: Compute the SDF in parallel on each domain using the SFMM algorithm

necessary. This property allows us to loosen the strict limit on scalability that
the above mentioned methods possess and allow even very large computational
domains to be processed.

The features of our algorithm can be summarized as:

• Easy to implement since it is the SFMM with according boundary condi-
tions on the subdomains and narrow band

• The algorithm works for massive parallel computations
• Excellent FMM-speedup on fine grids since no communication is needed
• Parallelization improves accuracy, for as the number of processes increases,

the number of points computed directly with closest point projection in-
creases.

• The parallel algorithm works also for second order schemes

The parallelization of the entire algorithm basically consists of the paralleliza-
tion of its two main subroutines, i.e.

1. narrow band initialization
2. ghostcell boundary data computation

4 Numerical experiments

In the following section we designed a series of test cases to exploit the nu-
merical features of our algorithm. We show numerically the performance and
scalability of our new massive parallel fast marching algorithm, as well as to
check the accuracy of the computed signed distance function. In particular
we will show that it maintains first order error, as can be easily deduced from
the type of evolution scheme we use.

4.1 MPFMM performance for ”analytical circle/sphere”

At first, we investigate the parallel error propagation of our MPFMM algo-
rithm. We make use of a 2D circle with its center xc = (0, 0, 0), radius R = 3.0,
and set in a computational domain with the size [−10, 10] × [−10, 10]. The
signed distance function for this geometry can be computed analytically via
the following equation

T (x) = R0 − ‖x− xc‖, x ∈ RN . (3)

A Massive Parallel Fast Marching Method 5

Fig. 2. On the left: parallel signed distance computation on 16 cores for a circle. In
the middle and right: error-evolution on a 41× 41 and a 81× 81 grid.

This simplifies both the initialization procedure and the computation of the
error. We used two different grid resolutions: 41 × 41 and 81 × 81 grid cells
on a uniform grid with grid cell sizes dx = 0.48780 and dx = 0.24691. The
computation is performed on 16 cores. Figure 2 shows the error distribution
through the global domain subdivided into 16 subdomains.

As expected, the MPFMM algorithm aggregates the error in diagonal di-
rection. This is because the fast marching method computes the discrete gradi-
ent in the horizontal and vertical coordinate directions. The maximum global
error on each grid is 0.21 and 0.14. This is less than the grid sizes dx = 0.48780
and dx = 0.24691. Thus this experiment shows that the MPFMM algorithm
maintains first order accuracy on all local subdomains.

In order to further exploit the nice initialization properties of the analytical
sphere, we set up the 3D problem described in [Herrmann(2003)]. In this
problem, the sphere is located inside a unit cube, with xc = (1

2 ,
1
2 ,

1
2) and

radius R0 = 0.25. The signed distance function in this problem, is defined
similarly to equation (3), thus we provide the initial data for the MPFMM
algorithm using this equation. Again, we make use of two grid sizes: 192 ×
192×192 and 384×384×384. We run our algorithm using up to 8192 parallel
cores. Figure 3, shows the MPFMM algorithm’s super linear scalability over all
processor ranges. This is due to the logarithmic complexity of the sequential
Fast Marching, which therefore scales logarithmically. It is worth noting that
the only limiting factor in the number of subdomains on which the MPFMM
algorithm can be parallelized on is the number of global grid cells. This does
not present a problem particularly when dealing with larger domains. Thus it
is a highly scalable algorithm for computing the signed distance function on
large domains.

4.2 MPFMM for triangulated surfaces

Here we show some numerical tests targeting the overall performance of the
MPFMM algorithm. Thus we run our MPFMM algorithm together with the
data initialization routine. We run our algorithm on two different benchmark
geometries, each of which is composed of a different number of triangles:

6 Authors Suppressed Due to Excessive Length

100 101 102 103

number of tasks(N)

100

101

102

103

S
p
e
e
d
u
p
,
T
_1

 /
 T

_N

Strong scalability speedup, dimension is 192^3

Optimal
PFMM

100 101 102 103 104

number of tasks(N)

100

101

102

103

104

S
p
e
e
d
u
p
,
T
_1

 /
 T

_N

Strong scalability speedup, dimension is 384^3

Optimal
PFMM

Fig. 3. Speedup for ”analytical sphere” for up to 8192 cores (left 1923, right 3843).

Fig. 4. A tetrahedron consisting of 4 triangles (left) and a triangulated sphere
consisting of 840 triangles (right) are used for our speedup investigations.

1 2 4 8 16 32 64 128 256 512 1024 2048
number of tasks(N)

10-1

100

101

102

103

104

S
p
e
e
d
u
p
,

T
_1

 /
 T

_N

Strong scalability speedup, grid dimension is 64^3

Optimal
PFMM + init
PFMM
Init

1 2 4 8 16 32 64 128 256 512 1024
number of tasks(N)

10-1

100

101

102

103

104

S
p
e
e
d
u
p
,

T
_1

 /
 T

_N

Strong scalability speedup, grid dimension is 128^3

Optimal
PFMM + init
PFMM
Init

1 2 4 8 16 32 64 128 256 512 1024
number of tasks(N)

100

101

102

103

104

S
p
e
e
d
u
p
,

T
_1

 /
 T

_N

Strong scalability speedup, grid dimension is 256^3

Optimal
PFMM + init
PFMM
Init

Fig. 5. Speedup for up to 2048 cores performed for the triangulated tetrahedron
with three grid-resolutions: 643 (left) and 1283 (middle) and 2563 (right) gridcells.

1 2 4 8 16 32 64 128 256 512 1024 2048
number of tasks(N)

10-1

100

101

102

103

104

S
p
e
e
d
u
p
,

T
_1

 /
 T

_N

Strong scalability speedup, grid dimension is 64^3

Optimal
PFMM + init
PFMM
Init

1 2 4 8 16 32 64 128 256 512 1024 2048
number of tasks(N)

10-1

100

101

102

103

104

S
p
e
e
d
u
p
,

T
_1

 /
 T

_N

Strong scalability speedup, grid dimension is 128^3

Optimal
PFMM + init
PFMM
Init

1 2 4 8 16 32 64 128 256 512 1024 2048
number of tasks(N)

10-1

100

101

102

103

104

S
p
e
e
d
u
p
,

T
_1

 /
 T

_N

Strong scalability speedup, grid dimension is 256^3

Optimal
PFMM + init
PFMM
Init

Fig. 6. Speedup for up to 2048 cores performed for the triangulated sphere with
three grid-resolutions: 643 (left) and 1283 (middle) and 2563 (right) gridcells.

A Massive Parallel Fast Marching Method 7

• tetrahedron (Figure 4) consisting of 4 triangles,
• sphere (Figure 4) comprising 840 triangles.

We run our algorithm on the benchmark geometries using three different
meshes: 643 and 1283 and 2563. With this set up we can investigate the per-
formance of all the important algorithmic parts.

In the first test we compute the signed distance function on a tetrahedron.
This shows the performance of the MPFMM algorithm paired with the ini-
tialization routine for a very simple initialization. Due to the simple nature of
the geometry, we can easily deduce the performance of the MPFMM with an
accelerated search algorithm for the closest triangle. Such results are shown
in Figure 5.

In the second test, we compute the signed distance function on a triangu-
lated sphere in order to investigate the performance of the MPFMM on larger
triangulated meshes. Results depicted in Figure 6 show that the MPFMM
maintains good scalability and performance in this case as well.

Both tests show similar scaling properties and performance, suggesting
that the latter are maintained through larger meshes. However, the algorithm
performs more poorly for the smaller mesh of size 643. This is due to the
fact that the ratio of set-up time to PFMM-computation time is higher, as
the number of degrees of freedom is too small to obtain reasonably efficient
parallel computation. These benchmark tests therefore show that scaling is
limited only on the lower size of the mesh.

5 Concluding Remarks

In this paper we presented a parallel algorithm for the fast marching method.
We investigated several massive parallel FMM-computations (MPFMM) for
simple geometries with respect to their speedup behaviour on up to 2048- and
8192 cores respectively. As expected, the parallel FMM-speedup scales opti-
mally for fine grid resolutions and the numerical results show an according
global signed distance function. However, the parallel boundary value initial-
ization could still be improved by storing the geometry information in a tree
and use a triangle search with a special partition on the tree, instead of dis-
tributing the entire geometry to each process. Furthermore, we showed that
the order of convergence is conserved for the parallel computations.

6 Acknowledgments

This result/work/publication was supported by the European Regional De-
velopment Fund in the IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070) and the project of major infrastructures for re-
search, development and innovation of Ministry of Education, Youth and
Sports with reg. num. LM2011033.

8 Authors Suppressed Due to Excessive Length

References

[Croce et al.(2013)Croce, Kotas, Krause, and Poletti] R. Croce, P. Kotas,
R. Krause, and V. Poletti. A new massive parallel fast-marching algo-
rithm for signed distance computations with respect to complex triangulated
surfaces. Preprint 201314, Institute of Computational Science, Università della
Svizzera Italiana, December 2013.

[Herrmann(2003)] M. Herrmann. A domain decomposition parallelization of the
fast marching method. Technical report, Center for Turbulence Research, 2003.

[Jeong and Whitaker(2007)] W. Jeong and R.T. Whitaker. A fast iterative method
for a class of hamilton-jacobi equations on parallel systems. Sch. Comput. Univ.
Utah, 84112(2):1–4, 2007.

[Núnez(2011)] L.A.Z. Núnez. Parallel implementation of fast marching method.
Technical report, Massachusetts Institute of Technology, 2011.

[Sethian(1996)] J.A. Sethian. A fast marching method for monotonically advancing
fronts. Proc. Natl. Acad. Sci. United States Am., 93(4):1591–1595, 1996.

[Sethian(1999)] J.A. Sethian. Level set methods and fast marching methods. Cam-
bridge University Press, 1999. ISBN 9780521645577.

[Tugurlan(2008)] M.C. Tugurlan. Fast marching methods - Parallel implementation
and analysis. Dissetation, Louisiana State University, 2008.

[Weber et al.(2008)Weber, Devir, Bronstein, Bronstein, and Kimmel] O. Weber,
Y.S. Devir, A.M. Bronstein, M.M. Bronstein, and R. Kimmel. Parallel algo-
rithms for approximation of distance maps on parametric surfaces. ACM Trans.
Graph., 27(4):104, 2008.

