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1 Introduction

In this paper we consider a second order elliptic problem defined on a polyg-
onal region Ω, where the diffusion coefficient is a discontinuous function. The
problem is discretized by a symmetric interior penalty discontinuous Galerkin
(DG) finite element method with triangular elements and piecewise linear
functions. Our goal is to design and analyze an additive Schwarz method
(ASM), see the book by Toselli and Widlund [2005], for solving the resulting
discrete problem with rate of convergence independent of the jumps of the
coefficient. The method is two-level and without overlap of the substructures
into which the original region Ω is partitioned.

Usually, two level ASMs for discretizations on fine mesh of size h are
being built by introducing a partitioning of the domain into subdomains
of size H > h, where local solvers are applied in parallel. A global coarse
problem is then typically based on the same partitioning. This approach
has been generalized for nonoverlapping domain decomposition methods for
DG discretizations by Feng and Karakashian [2001] and further extended by
Antonietti and Ayuso [2007] by allowing the coarse grid with mesh size H to
be a refinement of the original partitioning into subdomains where the local
solvers are applied.

The ASM discussed here is a generalization to non-constant diffusion coef-
ficient and very small subdomains of methods mentioned above and of those
presented in Dryja and Sarkis [2010] and Dryja et al. [2014]. Other recent
works towards domain decomposition preconditioning of DG discretizations
of problems with strongly varying coefficients include Ayuso de Dios et al.
[2014], Brix et al. [2013] and Canuto et al. [2014]. In this paper, local solvers
act on subdomains which are equal to single elements of the fine mesh. By al-
lowing single element subdomains we substantially increase the level of paral-
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lelism of the method. Very small and cheap to solve local systems come in huge
quantities, which possibly can be an advantage on new multithreaded pro-
cessors. Moreover, small subdomains give more flexibility in assigning them
to processors in coarse grain parallel processing. The price to be paid for this
in some sense extreme parallelism is worse condition number of the precon-
ditioned system, which is of order O(H2/h2), where H and h are the coarse
and the fine mesh parameters, respectively. This bound is independent of the
jumps of diffusion coefficient if its variation inside substructures is bounded.
Numerical experiments confirm theoretical results.

The paper is organized as follows. In Section 2, differential and discrete DG
problems are formulated. In Section 3, ASM for solving the discrete problem
is designed and analyzed. Numerical experiments are presented in Section 4.

In the paper, for nonnegative scalars x, y, we shall write x . y if there exits
a positive constant C, independent of x, y and the mesh parameters h,H,
and of the jumps of the diffusion coefficient ρ as well, such that x ≤ Cy. If
both x . y and y . x, we shall write x ' y.

2 Differential and discrete DG problems

Let us consider the following variational problem in a polygonal region Ω:
Find u∗ ∈ H1

0 (Ω) such that

a(u∗, v) = (f, v)Ω , v ∈ H1
0 (Ω), (1)

where

a(u, v) =

∫
Ω

ρ∇u · ∇vdx, (f, v)Ω =

∫
Ω

f v.

We assume that ρ ∈ L∞(Ω) and that there exist constants α0 and α1 such
that 0 < α0 ≤ ρ ≤ α1 in Ω. In addition we assume that f ∈ L2(Ω).

2.1 Discrete problem

Let TH be a subdivision of Ω into NH disjoint open polygonal regions
Ωi, i = 1, . . . , NH , such that Ω̄ =

⋃
i=1,...,NH

Ω̄i and that the number
of neighboring regions is uniformly bounded. We set Hi = diam(Ωi) and
H = maxi=1,...,NH Hi. Further, let Th denote an affine, shape regular con-
forming triangulation (with triangles) of Ω, Ω̄ =

⋃
κ∈Th κ̄, which is derived

from TH by some refinement procedure. Thus, each Ωi is a union of certain
elements from Th. The diameter of a triangle κ ∈ Th will be denoted by hκ
and the mesh parameter is h = maxκ∈Th hκ.
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In what follows we shall assume that ρ is piecewise constant (possibly with
large discontinuities) on Th, so that ρ|κ is constant on each κ ∈ Th.

By E0h we denote the set of all common (internal) faces of elements in Th,
so that eij ∈ Eh iff eij = κi∩κj is of positive measure. We will use symbol Eh
to denote the set of all faces, that is those either in E0h or on the boundary ∂Ω;
for e ∈ Eh, we also set |e| = diam(e). We shall assume local quasi-uniformity
of the grid, i.e. if eij ∈ E0h is such that eij = κi ∩ κj , then hi ' hj .

For p ∈ {0, 1}, we denote by Pp(κ) the set of polynomials of degree not
greater than p on κ̄. Then we define the finite element space Vh, in which we
will approximate (1),

Vh = {v ∈ L2(Ω) : v|κ ∈ P1(κ),∀κ ∈ Th}. (2)

Note that the traces of the functions from Vh are multi-valued on the
interface E0h.

We define the discrete problem as the symmetric interior penalty discon-
tinuous Galerkin method, see for example Ern et al. [2009] or Dryja [2003]:

Find u ∈ Vh such that

Ah(u, v) = (f, v)Ω , v ∈ Vh, (3)

where

Ah(u, v) ≡
∑
κ∈Th

(ρ∇u,∇v)κ +
∑
e∈Eh

〈γ[u], [v]〉e

−
∑
e∈Eh

(
〈[u], {ρ∇v}ω〉e + 〈{ρ∇u}ω , [v]〉e

)
,

and δ > 0 is sufficiently large to ensure positive definiteness of Ah(·, ·), and
on eij = κi ∩ κj

γ =
δ

|eij |
ρiρj
ρi + ρj

, {ρ∇u}ω = ωjρi∇ui +ωiρj∇uj , [u] = ui ni +uj nj ,

with ωj = ρj/(ρi + ρj). Here, for any function ϕ we use the convention that
ϕi (resp.ϕj) refers to the value of ϕ|κi (resp. ϕ|κj ) on eij . The unit normal

vector pointing outward κi is denoted by ni. On the boundary of Ω, we set
{ρ∇u}ω = ρ∇u and [u] = un.

Let us introduce a simplified form

Dh(u, v) =
∑
κ∈Th

(ρ∇u,∇v)κ +
∑
e∈Eh

〈γ[u], [v]〉e.

Then it is well known that Dh(·, ·) is spectrally equivalent to Ah(·, ·), i.e.

Ah(u, u) ' Dh(u, u) ∀u ∈ Vh.
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3 Additive Schwarz methods

3.1 Additive Schwarz method, version I

Let Nh be the number of elements in Th. We decompose Vh as follows:

Vh = V0 +

Nh∑
i=1

Vi

where
V0 = {v ∈ Vh : v|κ ∈ P0(κ) on κ ∈ Th}

and
Vi = {v ∈ Vh : v|κ = 0 for all κ ∈ Th such that κ 6= κi}. (4)

Using the above decomposition we define local operators Ti : Vh → Vi,
i = 1, . . . , Nh, with inexact solver

Dh(Tiu, v) = Ah(u, v) ∀v ∈ Vi,

so that we solve for ui = Tiu defined on κi ∈ Th such that

(ρi∇ui,∇vi)κi +
∑
e⊂∂κi

∫
e

γuivi = Ah(u, vi) ∀vi ∈ Vi,

and set (Tiu)|κj = 0 for j 6= i. The coarse solve operator is T0 : Vh → V0
defined analogously as

Dh(T0u, v0) = Ah(u, v0) ∀v0 ∈ V0.

Note that on V0, the approximate form Dh(·, ·) coincides with Ah(·, ·) and
simplifies to

Dh(u0, v0) =
∑
e∈Eh

〈γ[u0], [v0]〉e ∀u0, v0 ∈ V0.

Theorem 1. Let T = T0 +
∑Nh
i=1 Ti. Then

Ah(Tu, u) ' Ah(u, u) ∀u ∈ Vh.

This means that the condition number of the resulting system is uniformly
bounded independently of h, H and ρ. However, the method is not robust,
because dimV0 = Nh is very large. The proof of Theorem 1 will appear
elsewhere.
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3.2 Additive Schwarz method, version II

Since version I described above suffers from the very large size of the coarse
space V0 (based on edges of the fine triangulation Th, with averaged coeffi-
cients on them), here we consider a coarse space which is set up on the edges
of TH , the coarse partition. In this way the method regains high level of
parallelism, as the coarse problem now can in principle be solved on a single
processor. Note that this approach is similar to that of Feng and Karakashian
[2001].

We decompose Vh as follows:

Vh = V̄0 +

Nh∑
i=1

Vi

where
V̄0 = {v ∈ Vh : v|Ωi ∈ P0(Ωi), i = 1, . . . , NH}

and the local spaces Vi, i = 1, . . . , Nh, remain as defined in (4). Now, the
coarse operator T̄0 : Vh → V̄0 is defined such that T̄0u = ū0 where

Dh(ū0, v) = Ah(u, v) ∀v ∈ V̄0.

In order to formulate the condition number result, we shall assume uni-
formly bounded level of variation of the coefficient within subdomain: there
exist positive constants c and C such that

c ρ̄i ≤ ρ|Ωi ≤ C ρ̄i, i = 1, . . . , NH , (5)

where

ρ̄i :=
1

|Ωi|

∫
Ωi

ρ.

Theorem 2. Let Hi = diam(Ωi) and let T = T̄0 +
∑Nh
i=1 Ti. Under the above

assumptions,
β−1Ah(u, u) . Ah(Tu, u) . Ah(u, u)

where β = maxi=1,...,NH{
H2
i

minκ∈Th,κ⊂Ωi h
2
κ

}.

Remark 1. Detailed proofs of Theorems 1 and 2 will be provided elsewhere
due to the page limits. Here we only briefly sketch the idea of the proof
of Theorem 2. We follow the abstract theory from the book by Toselli and
Widlund [2005]. Since the local stability and strengthened Schwarz inequality
assumptions are straightforward, it remains to prove the existence of stable
decomposition for any v ∈ Vh. To this end, we make use of the coarse space
which makes it possible to extract subdomain average from v and deal only
with functions with zero average on each subdomain. Applying Friedrichs
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inequality for discontinuous functions, Brenner [2003], and making use of (5)
we prove the stability constant of the decomposition is of order β.

4 Numerical experiments

Let us choose the unit square as the domain Ω and for some prescribed
integer M divide it into NH = 2M × 2M smaller squares Ωi (i = 1, . . . , NH)
of equal size. This decomposition of Ω is then further refined into a uniform
triangulation Th based on a square 2m × 2m grid (m ≥M) with each square
split into two triangles of identical shape. Hence, the fine mesh parameter is
h = 2−m, while the coarse grid parameter is H = 2−M . We discretize the
problem (1) on the fine triangulation using the method (3) with δ = 7.

In the following tables we report the number of Preconditioned Conjugate
Gradient iterations for operator T (defined in Section 3.2) which are required
to reduce the initial Euclidean norm of the residual by a factor of 106 and
(in parentheses) the condition number estimate for T . We consider two sets
of test problems: with either continuous or discontinuous coefficient ρ. We
always choose a random vector for the right hand side and a zero as the
initial guess.

4.1 ASM version II vs. “standard” ASM

First let us consider the performance of ASM version II against a more
“standard” ASM, see [Dryja et al., 2014, Section 3.3], where the local solve
is restricted not to a single element of size h, but to a single subdomain
Ωi of size H. For the diffusion coefficient we take a continuous function,
ρ(x) = x21 + x22 + 1. As it turns out from Tables 1 and 2, the condition
number of the method considered in Section 3.2 indeed shows an O((H/h)2)
behavior, as predicted by Theorem 2, while methods which use local solves on
subdomains of diameter at least H (e.g. Dryja et al. [2014] or, similarly, Feng
and Karakashian [2001], Antonietti and Ayuso [2007]) exhibit more favorable
O(H/h) dependence.

4.2 Discontinuous coefficient

Next, let us consider ρ with discontinuities aligned with an auxiliary partition-
ing of Ω into 4× 4 squares. Precisely, we introduce a red–black checkerboard
coloring of this partitioning and set ρ = 1 in red regions, and the value of ρ1
reported in Table 3 in black ones. In this way, our fine and coarse triangula-
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Fine (m) → 4 5 6 7
↓ Coarse (M)

4 29 (22) 39 (40) 59 (1.1 · 102) 96 (3.8 · 102)
5 30 (23) 39 (40) 59 (1.1 · 102)

6 30 (23) 38 (40)
7 30 (23)

Table 1 Dependence of the number of iterations and the condition number (in parenthe-

ses) on H = 2−M and h = 2−m for the method of Section 3.2.

Fine (m) → 4 5 6 7
↓ Coarse (M)

4 27 (20) 35 (34) 46 (67) 62 (1.3 · 102 )

5 28 (20) 35 (34) 46 (67)
6 28 (20) 35 (34)

7 28 (20)

Table 2 Dependence of the number of iterations and the condition number (in parenthe-

ses) on H = 2−M and h = 2−m for the method of [Dryja et al., 2014, Section 3.3].

tions, with m = 7 and M = 4, will always be aligned with the discontinuities.
Table 3 shows the independence of the condition number on ρ1 in this case.

Finally, we consider elementwise discontinuous coefficient, with ρ = 1 on
odd and ρ = ρ1 on even-numbered triangles. Table 4 shows that in this case
the coarse space fails (a dash means the method did not converge in 600
iterations). This confirms the importance of the assumption of mild variation
of the coefficient (5).

ρ1 100 10−2 10−4 10−6

iter (cond) 134 (3.8 · 102) 141 (3.7 · 102) 161 (3.7 · 102) 179 (3.8 · 102)

Table 3 Dependence of the number of iterations and the condition number (in parenthe-

ses) on the discontinuity when the coefficient is constant inside subdomains. Red–black

4× 4 distribution of ρ, aligned with domain decomposition. Fixed H/h = 8.

ρ1 100 10−2 10−4 10−6

iter (cond) 134 (3.8 · 102) 435 (3.8 · 103) − (3.1 · 105) − (2.5 · 107)

Table 4 Dependence of the number of iterations and the condition number (in parenthe-

ses) on the discontinuity when the coefficient elementwise discontinuous. Fixed H/h = 8.
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5 Conclusions

A nonoverlapping ASM for symmetric interior penalty DG discretization of
2nd order elliptic PDE with discontinuous coefficient has been presented, in
which a very large number of very small local problems is solved in parallel,
together with one coarse problem of moderate size. Under mild assumptions,
the condition number of the resulting system is O((H/h)2), independently of
the jumps of the coefficient.
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Maksymilian Dryja, Piotr Krzyżanowski, and Marcus Sarkis. Additive
Schwarz method for DG discretization of anisotropic elliptic problems. In
J. Erhel, M.J. Gander, L. Halpern, G. Pichot, T. Sassi, and O. Widlund,
editors, Domain Decomposition Methods in Science and Engineering XXI,
volume 98 of Lecture Notes in Computational Science and Engineering,
pages 407–415. Springer, 2014.

Alexandre Ern, Annette F. Stephansen, and Paolo Zunino. A discontinuous
Galerkin method with weighted averages for advection-diffusion equations
with locally small and anisotropic diffusivity. IMA J. Numer. Anal., 29
(2):235–256, 2009. ISSN 0272-4979. doi: 10.1093/imanum/drm050. URL
http://dx.doi.org/10.1093/imanum/drm050.

Xiaobing Feng and Ohannes A. Karakashian. Two-level additive Schwarz
methods for a discontinuous Galerkin approximation of second order ellip-
tic problems. SIAM J. Numer. Anal., 39(4):1343–1365 (electronic), 2001.
ISSN 1095-7170.

Andrea Toselli and Olof Widlund. Domain decomposition methods—
algorithms and theory, volume 34 of Springer Series in Computational
Mathematics. Springer-Verlag, Berlin, 2005. ISBN 3-540-20696-5.


