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1 Introduction

Suppose we are interested in the following distributed @b problem: given a sys-
tem governed by the parabolic PBE- ¥y = u on the time interval0, T] (where
y denotes the time derivative gJ, we wish to choose the forcing term= u(t) to
minimize the discrepancy between the trajectory and thieetbstatey= y(t). After
semi-discretization in space, we obtain for a given chofqggoametery, v > 0 the
following minimization problem:

mind [ Iy—91Pats Liyr) -5+ S [ ol
subjectto  y+Ay=u, y(0) = yo,

1)

whereA is the matrix obtained by semi-discretization of the opmra®’. While
the PDE in (1) may resemble an initial-value problem, theimiration problem is
in fact a two-point boundary value problem in time, since fing-order optimal-
ity conditions couple the PDE to an adjoint equation thataskwards in time and
contains a final condition, see Section 2. To solve such syssie parallel, one can
use multiple shooting methods, see [8] and referencesitheneparareal-type al-
gorithms in a reduced Hessian formulation, see [7, 4]. A Sohwwreconditioner in
time for such systems was presented in [1], where on eachtempall j = [T}, Tj 1],
one uses an initial condition fgrfrom |;_, and a final condition for the adjoint state
A froml;,1. To the authors’ knowledge, no convergence analysis isadlaifor this
method.
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We study in this paper Schwarz methods for the time-parafiéition of (1).
We present a rigorous convergence analysis for the caseoadutadomains, which
shows that the classical Schwarz method converges, evaowrioverlap! Refor-
mulating the algorithm reveals that this is because imgpsiitial conditions fory
and final conditions o is equivalent to using Robin transmission conditions be-
tween time subdomains fgr Using well chosen linear combinationsyéndA as
transmission conditions allows us to optimize the Robirditions for performance,
and leads to much faster Schwarz methods, especially wieespttial operator has
eigenvalues close to zero. We illustrate our results witinewical experiments.

2 Schwarz Methodsin Time

Using the Lagrange multiplier approach (see e.g. the hiéstreview [5]), one can
derive the forward and adjoint problems to be

{y+Ay_u on(0,T), { A—ATA = y—y on(0,T),
y(0) = Yo, A(T) =—yy(T)=9(T)),

where the contral and adjoint statd are related by the algebraic equatift) =
vu(t) forall t € (0,T). Eliminatingu, the above system can thus also be written as

y A-vUlly] TJoO

FE -5 @
Suppose we wish to divide the time interval T) into two subinterval$; = (0, 3)
andl, = (a,T) with a < 8 in order to solve the two subdomain problems in par-

allel. Then for any choice of parametgrsy > 0, we propose the following parallel
Schwarz algorithm: fok = 1,2, ..., solve

4 B[] omeen
y‘{(o) = Yo, (3a)
M(B)+pYi(B) = A5 1(B) +pYs 1(B),

v A 1! ys| _ [0 _
[/\5 +| )\k _y onl, = (a,T),
_ 3b
y;m)_%k( =y§ Ha) - gAY (a), (30)
X(T) = —v(5(T) -9
For p=q =0, the transmission conditions reduce to the classicalitiond from

[1]. To understand why we consider transmission conditmfrthis form, suppose
thatA = AT € R™™ so thatA can be diagonalized as= QDQ', with Q"Q = |
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andD = diag(d, . ..,dm). Then the ODE system in (3a) can be written as

R 1171 A Y]
Z(0) =2,
HE(B)+ PZ(B) = 15 H(B)+ P2 Y(B),

wherez¢ = QTy¥, uk = QT Af for j = 1,2 andZ= Q'Y, z = QTyo. Thus, we obtain
mindependent X 2 systems of the form

(4)

N N Y LY (I P

wherez(ii)’k anduf)’k are the-th components @ andu'l‘ respectively, and; is the
i-th eigenvalue ofA. By isolatingt from the first equation in (5) and substituting
into the second, we obtain the second-order ODE

" (@ vy = v, (6)
whereas the boundary conditions become

20 =2 (0), 4"+ (d+pv 12| ="+ (@+pv B!

t=B t=8"

Hence, once we eliminate the adjoint state, it becomes apptrat we are in fact
imposing a Robin transmission condition on the elliptic hdary value problem
(6), even with the classical Schwarz methmd g = 0 from [1]. With the additional
parametep andg, one can now optimize the convergence, as in optimized Sehwa
methods [6]. Boundary conditions of the fogm- gA in (3b) can be explained sim-
ilarly; here, the minus sign is chosen so that the subdomaibl@m is well-posed
for g > 0 wheneveA is symmetric semi-positive definite.

Remark on implementation. Since we are primarily interested in the behavior of
the Schwarz method, we will regard solvers for the subdompeiblems (3a) and
(3b) as black boxes. We emphasize however that final congditbthe formA + py
already appear when the objective function contains t}getaerm%’ ly(T) =9(T)|?,
see (3b). Thus, existing solvers can be used as is or easiljfigtbto handle the
optimized conditions, see [2] or [3].

3 Convergence analysis

In this section, we assun#eto be symmetric and semi-positive definite, so that (3a)—
(3b) can be diagonalized as in Section 2 vatk> 0. Moreover, since the problemis
linear, we can analyze the error equation, which meansgstfiandy'to zero and
studying howy‘f and/\jk converge to zero ds— . After diagonalization, the first
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subdomain solution satisfies (6) with homogeneous initialdition:
B - (@ +v iz =0 Mo =0 = 2@ =Asinhat), ()

whereg; = y/d?+v-1> 0, andA,!‘ is a constant determined by the boundary con-

dition v'z(1i>’k+ (p+ vdi)z(li) =g = = gk, Substituting the solution from (7) and
(i)

; ; K vi k _ g
isolatingA{ yields A = Vo cosap) - (ci.+pv Dsniap)]’

domainly = (a,T) at iterationk+ 1. The boundary data &t= o can be written
as

Next, we consider the sub-

(i).k

A i)k

—aw| = —van " (1-vad)Z |
i)k giqcosh{aia) + (qd — v sinh(gia)
aicosh{ai) + (di + pv—1)sinh(aiB) -
(8)

ORSS

On the other hand, the ODE can be written as

i (vt =0 onlzz(a T),
w My M =0 M a) - ) =k

(i),k+1

).k+1 ).k+1
Slncez2 = [

—di ;12 , the boundary conditions can be written as

Vs T+ (1= diy s T = 0, i (@) — (a+ ) (o) = R

The boundary condition at= T gives

I‘éi)ﬁkﬂ = B [giycoshai (T —1)) + (1 — diy) sinh(6i (T —1))],

whereB*1 is a constant. The boundary conditiortat a allows us to determine
this constant (after some algebra) to be

1 _ _h)kt1 |

' (ai(1+ay))cositai(T —a)) + (di(1—ay) +a-+v-ty)sinh(6i(T — a))

Note that the denominator does not vanish for any choiag pf> 0: if we define
6 = tanh’l(di/ai), which is possible because<0d; < a;, then we can write the
denominator as

ai cosh(-) + di sinh(-) 4 qy(ai cosh(-) — di sinh(-)) + (q+ v~ 1y) sinh(-)
= v Y2[cosK- + 8) + qycosh- — 8)] + (q+ v ty)sinh(-) > 0

If we now letg++2 = % (B) 4+ pA*1(B), we get
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i),k+2_h(i)Ak+1V71/2 [pcosh(ai (T—B)+6)—ycosh{ai(T—B)—8)]—(1—v_'py)sinh(ai(T—B))
- v-1/2[cosHai(T —a)+6) +aycostai(T —a) )] +(q+v-1y)sinh(ci (T —a))

g(

Substituting (8) into the above equations and taking ats®alues, we obtain

Theorem 1. The parallel Schwarz metho@a){(3b) converges whenever < 1,
where
_ may | @i9costtaia) + (qd — v Ysinh(oia)
" diea(n)| aicosi(aiB) + (di + pv-1)sinh(aiB)
v 2[pcosh(ai(T — B) + 6) — ycosh(ai(T — B) — 6)] — (1—v_Lpy)sinh(ai(T — B)) [
v—1/2[cosh(ai(T —a) + 6) +qycoshai(T —a) — 6)] + (q-+ v1y) sinh(ai(T — a))

)

where the maximum is taken over all the set of eigenvalues of A

To gain a better understanding of the convergence, let usrasshatA = AT is
positive semi-definite (so thdt > 0) and consider a few special cases.

Classical transmission conditions (p = q=0). Here the expression simplifies to

p? = max
|

sinh(oia)  v*2sinh(6i(T — B)) + ycoshai(T — ) — &)
cosi{aB +8) ysinhai(T —a))+vi/2cosHai(T—a)+ &) |

If y<+/V, thenp < 1 and the method converges; this is because
sinh(gia) < cosHoia) < cosHaiB + 6)
and, since sintoi (T — B)) < cosH g (T — B) + &), we have
v2sinh(ai(T — B)) + ycoshai(T — B) - 6)

< v12sinh(qi(T — a)) + ycoshai (T — a) + 6)
< ysinh(ai(T — a)) + v¥/?coshai(T —a) — 8).

However, it is possible for the method to diverge/if- v/2, see Section 4. In the
case whely=0, i.e., when the target state does not appear explicitlyarobjective
function, it is possible to estimate the convergence fagitectly. Here we have

2 sinh(gia) sinh(gi (T — B))

p= miaxcosk(aiﬁ+ 6)coshai(T—a)+6) <1

sincea < (3. The term inside the maximum is a function of the eigenvatiiesa
o = ,/di2+ v—1and@ = arctaniid;/ai). It can be shown that this function is de-

creasing with respect ) on [0, ), see also Figure 1; thus,df,in > O is the mini-
mum eigenvalue of and omin, and6min are the corresponding values, then one can
estimatep by

p<( exXpl Omin(a + T — B)) )1/2_eomin(ﬁa)6mm
o eXF(Umin(B—FT—G)—FZGmin) ’
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where we used the bounds sfrRh< %exp(x) and cosix) > %exp(x), valid for all

x > 0. Thus, when the subdomains overlap, i.e., wena > 0, the convergence
factor decreases exponentially with respect to the ovesilegp3 — a. When there
is no overlap, i.e., when = B, it is still possible to boung by estimatingemin
since tanfBmin) = dmin/ Omin by definition, we get

Omin _ o Omi _ o 26n; . . .
eemfn e emfn _ l1—e 2emfn _ Amin 1 dmin — & 26min 14 Ormin .
€bmin 4 @ Ymin 1+ e 4bmin Omin Omin Omin
This implies

—26min Omin — Omin - vt

© Omin+Cmin (\/ij)z'

Taking square roots, we obtain the following estimate:

Theorem 2. Suppose A is symmetric positive definite gnd 0. Then the paral-
lel Schwarz metho@3a)-(3b) with classical transmission conditions épq = 0)
converges for all initial guesses with the estimate

e (B—a)y/d2+v1
< )
P= V1+vd?2+v2d

wheref3 — a > 0is the overlap size and & 0 is the smallest eigenvalue of A.

Note that if A arises from a spatial discretization of a differential @er, then
the smallest eigenvalue & typically does not vary much as the spatial grid is
refined. Thusthe convergence of the method is independent of the mesmptara

h. However, ifA is singular ¢l = 0) and there is no overlap, then convergence can
be very slow, see the example in Section 4.

Optimized transmission conditions, no target state (y = 0). To accelerate the
convergence of the method whAns singular, let us consider choosing the param-
etersp andq to be equal but non-zero. Then the convergence factor become

0ipcost{gia)+(pd —v—Ysinh(gia) pa; cosh(oi (T —B))-+(pd —1) sinh(ci (T —B)) [/
“diea(n)| gicosh(aiB)+(di+pv-1)sinh(aiB) ’ gicoshoi(T—a))+(p+d)sinh(ai(T—a)) '

A plot of the right-hand side as a function dffor fixed p > 0 is shown in Fig. 1.
We see that adj — «, we have

p—>p- lim
dj—c0

cosaia + 6)cosHai (T — B) + 6)\ */*
<cosr(mﬁ+a>cosr(m(T—a>+a>) '

Thus, if no overlap is used, then the method converges orfly<ifp < 1. On the
other hand, fod; = 0, we have
pcoshaia) —v—Y2sinhgia) v—Y2pcosiai(T — B)) —sinh(ai(T — B)) v

PA=0=1 cost{aiB) + pv-V2sinaiB) v H2cosHai(T — a)) + psinh(ai(T — a))
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Fig. 1 A comparison of contraction factors as a function of eigkresd; for classical p=q=0)
and optimized transmission conditiorsdndq obtained by equioscillation).

Thus, if we assume the eigenvalue#\afan be anywhere in the intenjél ), then
the smallest convergence factor is obtained wipéd, = 0)| = |p(d; — )|, i.e., by
equioscillation.

4 Numerical experiments

To understand how convergence depends on the differentneéees, we consider
for each ODE two different test cases:

Case A:  The time interval = [0,3] is subdivided inta?; = (0,1), Q, = (1,3)
(no overlap), and the objective function has no explicigéarterm ¢ = 0). The
regularization parameter is= 1.

Case B: The subdomains aff = (0,2.9) and Q, = (2.9, 3), and the objective
function has a target term with= 10. The regularization parameter is stil= 1.

For each test case, we plot in Figure 1 the convergence facts a function of
the frequency;, both for classical § = g = 0) and optimized transmission condi-
tions. Based on the equioscillation criterion, we chopse q = 0.37 for case A
andp = g = 0.55 for case B. We see that when classical conditions are tised,
method converges in case A for all frequencies, whereassia Bathe method only
converges when the lowest eigenvalue of the spatial opasdtarger than about 2.
However, when optimized conditions are used, the parasetar be chosen so that
the method converges for all frequencies, and the speatitals can be made much
smaller than in the classical case (0.37 versus about Oddssical).

Next, we solve numerically the optimal control problem (Ithngoverning PDE
0tu = dyxu and regularization parameters= 1, y = 0. The problem is discretized
using the second-order Crank—Nicolson method with spatidtemporal mesh size
h=1/32 and ¥64. The problem is then solved in parallel using two time wind
Q; = (0,1) and Q, = (1,3). Again we consider two cases: in the first case, we
use Dirichlet boundary conditions in space, which meanspeatorA in (1) has
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Fig. 2 Convergence of Algorithm (3a)—(3b) for different parametend boundary conditions.

lowest eigenvalua? ~ 9.87. From Figure 2, we see that the method converges very

quickly with a rate that is indeed independentofsee remark after Theorem 2).
The fast convergence can be explained by Figure 1: the sppeatlius curve beyond
the pointd; = 9.87 is very close to zero, so the convergence is very quickeidde

In the second case, we consider the same PDE, but with Neubwmmdary
conditions in space. In this case, zero is an eigenvalueddpihatial operator, mean-
ing we have to minimize the convergence factor over the wimbégvald; € [0, ).
Here, the method with classical transmission conditigns ¢ = 0) converges very
slowly, whereas convergence is much faster with optimizgasimission conditions.
Again the convergence is independent of the spatial meshaszexpected.

5 Conclusions

We have presented a first analysis of Schwarz methods in timpafrabolic con-

trol problems. We have shown that classical Schwarz methtsrdady use Robin
type transmission conditions, and introduced a paramét@hacan be chosen to
obtain substantially faster convergence, especially wthenspatial operator has
eigenvalues close to zero. We are currently working on estimates for the many-
subdomain case and on higher order transmission conditions
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