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1 Introduction

Suppose we are interested in the following distributed control problem: given a sys-
tem governed by the parabolic PDE ˙y+L y= u on the time interval[0,T] (where
ẏ denotes the time derivative ofy), we wish to choose the forcing termu= u(t) to
minimize the discrepancy between the trajectory and the desired state ˆy= ŷ(t). After
semi-discretization in space, we obtain for a given choice of parametersγ,ν > 0 the
following minimization problem:

min
y,u

1
2

∫ T

0
‖y− ŷ‖2dt+

γ
2
‖y(T)− ŷ(T)‖2+

ν
2

∫ T

0
‖u‖2dt

subject to ˙y+Ay= u, y(0) = y0,

(1)

whereA is the matrix obtained by semi-discretization of the operator L . While
the PDE in (1) may resemble an initial-value problem, the minimization problem is
in fact a two-point boundary value problem in time, since thefirst-order optimal-
ity conditions couple the PDE to an adjoint equation that is backwards in time and
contains a final condition, see Section 2. To solve such systems in parallel, one can
use multiple shooting methods, see [8] and references therein, or parareal-type al-
gorithms in a reduced Hessian formulation, see [7, 4]. A Schwarz preconditioner in
time for such systems was presented in [1], where on each subintervalI j = [Tj ,Tj+1],
one uses an initial condition fory from I j−1 and a final condition for the adjoint state
λ from I j+1. To the authors’ knowledge, no convergence analysis is available for this
method.

Martin J. Gander
Department of Mathematics, University of Geneva, e-mail:Martin.Gander@unige.ch

Felix Kwok
Department of Mathematics, Hong Kong Baptist University, e-mail:felix_kwok@hkbu.edu.
hk

1



2 Martin J. Gander and Felix Kwok

We study in this paper Schwarz methods for the time-parallelsolution of (1).
We present a rigorous convergence analysis for the case of two subdomains, which
shows that the classical Schwarz method converges, even without overlap! Refor-
mulating the algorithm reveals that this is because imposing initial conditions fory
and final conditions onλ is equivalent to using Robin transmission conditions be-
tween time subdomains fory. Using well chosen linear combinations ofy andλ as
transmission conditions allows us to optimize the Robin conditions for performance,
and leads to much faster Schwarz methods, especially when the spatial operator has
eigenvalues close to zero. We illustrate our results with numerical experiments.

2 Schwarz Methods in Time

Using the Lagrange multiplier approach (see e.g. the historical review [5]), one can
derive the forward and adjoint problems to be

{

ẏ+Ay= u on (0,T),

y(0) = y0,

{

λ̇ −ATλ = y− ŷ on (0,T),

λ (T) =−γ(y(T)− ŷ(T)),

where the controlu and adjoint stateλ are related by the algebraic equationλ (t) =
νu(t) for all t ∈ (0,T). Eliminatingu, the above system can thus also be written as

[

ẏ
λ̇

]

+

[

A −ν−1I
−I −AT

][

y
λ

]

=

[

0
−ŷ

]

. (2)

Suppose we wish to divide the time interval(0,T) into two subintervalsI1 = (0,β )
andI2 = (α,T) with α ≤ β in order to solve the two subdomain problems in par-
allel. Then for any choice of parametersp,q≥ 0, we propose the following parallel
Schwarz algorithm: fork= 1,2, . . ., solve



















[

ẏk
1

λ̇ k
1

]

+

[

A −ν−1I
−I −AT

][

yk
1

λ k
1

]

=

[

0
−ŷ

]

on I1 = (0,β ),

yk
1(0) = y0,

λ k
1(β )+ pyk

1(β ) = λ k−1
2 (β )+ pyk−1

2 (β ),

(3a)



















[

ẏk
2

λ̇ k
2

]

+

[

A −ν−1I
−I −AT

][

yk
2

λ k
2

]

=

[

0
−ŷ

]

on I2 = (α,T),

yk
2(α)−qλ k

2(α) = yk−1
1 (α)−qλ k−1

1 (α),

λ k
2(T) =−γ(yk

2(T)− ŷ(T)).

(3b)

For p= q= 0, the transmission conditions reduce to the classical conditions from
[1]. To understand why we consider transmission conditionsof this form, suppose
thatA= AT ∈ R

m×m, so thatA can be diagonalized asA = QDQT , with QTQ = I
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andD = diag(d1, . . . ,dm). Then the ODE system in (3a) can be written as



















[

żk
1

µ̇k
1

]

+

[

D −ν−1I
−I −D

][

zk
1

µk
1

]

=

[

0
−ẑ

]

on I1 = (0,β ),

zk
1(0) = z0,

µk
1(β )+ pzk

1(β ) = µk−1
2 (β )+ pzk−1

2 (β ),

(4)

wherezk
j = QTyk

j , µk
j = QTλ k

j for j = 1,2 andẑ= QT ŷ, z0 = QTy0. Thus, we obtain
m independent 2×2 systems of the form

ż(i),k1 +diz
(i),k
1 −ν−1µ (i),k

1 = 0, µ̇ (i),k
1 −diµ (i),k− z(i),k1 = ẑ(i), (5)

wherez(i),k1 andµ (i),k
1 are thei-th components ofzk

1 andµk
1 respectively, anddi is the

i-th eigenvalue ofA. By isolatingµ from the first equation in (5) and substituting
into the second, we obtain the second-order ODE

z̈(i),k1 − (d2
i +ν−1)z(i),k1 =−ν−1ẑ(i), (6)

whereas the boundary conditions become

z(i),k1 (0) = z(i)0 (0), ż(i),k1 +(di + pν−1)z(i),k1

∣

∣

∣

t=β
= ż(i),k−1

2 +(di + pν−1)z(i),k−1
2

∣

∣

∣

t=β
.

Hence, once we eliminate the adjoint state, it becomes apparent that we are in fact
imposing a Robin transmission condition on the elliptic boundary value problem
(6), even with the classical Schwarz methodp= q= 0 from [1]. With the additional
parameterp andq, one can now optimize the convergence, as in optimized Schwarz
methods [6]. Boundary conditions of the formy−qλ in (3b) can be explained sim-
ilarly; here, the minus sign is chosen so that the subdomain problem is well-posed
for q≥ 0 wheneverA is symmetric semi-positive definite.

Remark on implementation. Since we are primarily interested in the behavior of
the Schwarz method, we will regard solvers for the subdomainproblems (3a) and
(3b) as black boxes. We emphasize however that final conditions of the formλ + py
already appear when the objective function contains the target termγ

2|y(T)− ŷ(T)|2,
see (3b). Thus, existing solvers can be used as is or easily modified to handle the
optimized conditions, see [2] or [3].

3 Convergence analysis

In this section, we assumeA to be symmetric and semi-positive definite, so that (3a)–
(3b) can be diagonalized as in Section 2 withdi ≥ 0. Moreover, since the problem is
linear, we can analyze the error equation, which means setting y0 andŷ to zero and
studying howyk

j andλ k
j converge to zero ask → ∞. After diagonalization, the first
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subdomain solution satisfies (6) with homogeneous initial condition:

z̈(i),k1 − (d2
i +ν−1)z(i),k1 = 0, z(i),k1 (0) = 0 =⇒ z(i),k1 (t) = Ak

i sinh(σit), (7)

whereσi =
√

d2
i +ν−1 > 0, andAk

i is a constant determined by the boundary con-

dition ν ż(i),k1 + (p+ νdi)z
(i),k
1 |t=β = g(i),k. Substituting the solution from (7) and

isolatingAk
i yieldsAk

i =
g
(i),k
1

ν[σi cosh(σiβ )+(di+pν−1)sinh(σiβ )]
. Next, we consider the sub-

domainI2 = (α,T) at iterationk+ 1. The boundary data att = α can be written
as

h(i),k+1 := z(i),k1 −qµ (i),k
1

∣

∣

∣

t=α
= −νqż(i),k1 +(1−νqdi)z

(i),k
1

∣

∣

∣

t=α

=−g(i),k
σiqcosh(σiα)+ (qdi −ν−1)sinh(σiα)

σi cosh(σiβ )+ (di + pν−1)sinh(σiβ )
.

(8)

On the other hand, the ODE can be written as

µ̈ (i),k+1
2 − (d2

i +ν−1)µ (i),k+1
2 = 0 onI2 = (α,T),

µ (i),k+1
2 (T)+ γz(i),k+1

2 (T) = 0, z(i),k+1
2 (α)−qµ (i),k+1

2 (α) = h(i),k+1.

Sincez(i),k+1
2 = µ̇ (i),k+1

2 −diµ
(i),k+1
2 , the boundary conditions can be written as

γ µ̇ (i),k+1
2 (T)+(1−diγ)µ

(i),k+1
2 (T) = 0, µ̇ (i),k+1

2 (α)−(di+q)µ (i),k+1
2 (α) = h(i),k+1.

The boundary condition att = T gives

µ (i),k+1
2 = Bk+1

i [σiγ cosh(σi(T − t))+ (1−diγ)sinh(σi(T − t))] ,

whereBk+1
i is a constant. The boundary condition att = α allows us to determine

this constant (after some algebra) to be

Bk+1
i =

−h(i),k+1

(σi(1+qγ))cosh(σi(T −α))+ (di(1−qγ)+q+ν−1γ)sinh(σi(T −α))
.

Note that the denominator does not vanish for any choice ofq,γ ≥ 0: if we define
θi = tanh−1(di/σi), which is possible because 0≤ di < σi , then we can write the
denominator as

σi cosh(·)+di sinh(·)+qγ(σi cosh(·)−di sinh(·))+ (q+ν−1γ)sinh(·)
= ν−1/2 [cosh(·+θi)+qγ cosh(·−θi)]+ (q+ν−1γ)sinh(·)> 0.

If we now letg(i),k+2 = µ (i),k+1
2 (β )+ pz(i),k+1

2 (β ), we get



Optimized Conditions for Control Problems 5

g(i),k+2=h(i),k+1ν−1/2 [pcosh(σi(T−β )+θi)−γ cosh(σi(T−β )−θi)]−(1−ν−1pγ)sinh(σi(T−β ))
ν−1/2 [cosh(σi(T−α)+θi)+qγ cosh(σi(T−α)−θi)]+(q+ν−1γ)sinh(σi(T−α))

.

Substituting (8) into the above equations and taking absolute values, we obtain

Theorem 1. The parallel Schwarz method(3a)–(3b) converges wheneverρ < 1,
where

ρ = max
di∈λ (A)

∣

∣

∣

∣

σiqcosh(σiα)+(qdi −ν−1)sinh(σiα)

σi cosh(σiβ )+(di + pν−1)sinh(σiβ )

· ν−1/2 [pcosh(σi(T −β )+θi)− γ cosh(σi(T −β )−θi)]− (1−ν−1pγ)sinh(σi(T −β ))
ν−1/2 [cosh(σi(T −α)+θi)+qγ cosh(σi(T −α)−θi)]+ (q+ν−1γ)sinh(σi(T −α))

∣

∣

∣

∣

1/2

,

where the maximum is taken over all the set of eigenvalues of A.

To gain a better understanding of the convergence, let us assume thatA = AT is
positive semi-definite (so thatdi ≥ 0) and consider a few special cases.

Classical transmission conditions (p= q= 0). Here the expression simplifies to

ρ2 = max
i

(

sinh(σiα)

cosh(σiβ +θi)
· ν1/2sinh(σi(T −β ))+ γ cosh(σi(T −β )−θi)

γ sinh(σi(T −α))+ν1/2cosh(σi(T −α)+θi)

)

.

If γ ≤√
ν, thenρ < 1 and the method converges; this is because

sinh(σiα)≤ cosh(σiα)≤ cosh(σiβ +θi)

and, since sinh(σi(T −β ))≤ cosh(σi(T −β )+θi), we have

ν1/2sinh(σi(T −β ))+ γ cosh(σi(T −β )−θi)

≤ ν1/2sinh(σi(T −α))+ γ cosh(σi(T −α)+θi)

≤ γ sinh(σi(T −α))+ν1/2cosh(σi(T −α)−θi).

However, it is possible for the method to diverge ifγ > ν1/2, see Section 4. In the
case whenγ = 0, i.e., when the target state does not appear explicitly in the objective
function, it is possible to estimate the convergence factordirectly. Here we have

ρ2 = max
i

sinh(σiα)sinh(σi(T −β ))
cosh(σiβ +θi)cosh(σi(T −α)+θi)

< 1,

sinceα ≤ β . The term inside the maximum is a function of the eigenvaluesdi via

σi =
√

d2
i +ν−1 andθi = arctanh(di/σi). It can be shown that this function is de-

creasing with respect todi on [0,∞), see also Figure 1; thus, ifdmin ≥ 0 is the mini-
mum eigenvalue ofA andσmin andθmin are the corresponding values, then one can
estimateρ by

ρ ≤
(

exp(σmin(α +T −β ))
exp(σmin(β +T −α)+2θmin)

)1/2

= e−σmin(β−α)−θmin,
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where we used the bounds sinh(x) ≤ 1
2 exp(x) and cosh(x) ≥ 1

2 exp(x), valid for all
x≥ 0. Thus, when the subdomains overlap, i.e., whenβ −α > 0, the convergence
factor decreases exponentially with respect to the overlapsizeβ −α. When there
is no overlap, i.e., whenα = β , it is still possible to boundρ by estimatinge−θmin

since tanh(θmin) = dmin/σmin by definition, we get

eθmin −e−θmin

eθmin +e−θmin
=

1−e−2θmin

1+e−2θmin
=

dmin

σmin
=⇒ 1− dmin

σmin
= e−2θmin

(

1+
dmin

σmin

)

.

This implies

e−2θmin =
σmin−dmin

σmin+dmin
=

ν−1

(√

d2
j +ν−1+d j

)2 .

Taking square roots, we obtain the following estimate:

Theorem 2. Suppose A is symmetric positive definite andγ = 0. Then the paral-
lel Schwarz method(3a)–(3b) with classical transmission conditions (p= q = 0)
converges for all initial guesses with the estimate

ρ ≤ e−(β−α)
√

d2+ν−1

√
1+νd2+ν1/2d

,

whereβ −α ≥ 0 is the overlap size and d≥ 0 is the smallest eigenvalue of A.

Note that if A arises from a spatial discretization of a differential operator, then
the smallest eigenvalue ofA typically does not vary much as the spatial grid is
refined. Thus,the convergence of the method is independent of the mesh parameter
h. However, ifA is singular (d = 0) and there is no overlap, then convergence can
be very slow, see the example in Section 4.

Optimized transmission conditions, no target state (γ = 0). To accelerate the
convergence of the method whenA is singular, let us consider choosing the param-
etersp andq to be equal but non-zero. Then the convergence factor becomes

ρ= max
di∈λ (A)

∣

∣

∣

∣

σi pcosh(σiα)+(pdi−ν−1)sinh(σiα)

σi cosh(σiβ )+(di+pν−1)sinh(σiβ )
· pσi cosh(σi(T−β ))+(pdi−1)sinh(σi(T−β ))

σi cosh(σi(T−α))+(p+di)sinh(σi(T−α))

∣

∣

∣

∣

1/2

.

A plot of the right-hand side as a function ofdi for fixed p> 0 is shown in Fig. 1.
We see that asdi → ∞, we have

ρ −→ p · lim
di→∞

(

cosh(σiα +θi)cosh(σi(T −β )+θi)

cosh(σiβ +θi)cosh(σi(T −α)+θi)

)1/2

.

Thus, if no overlap is used, then the method converges only if0 ≤ p < 1. On the
other hand, fordi = 0, we have

ρ(di = 0) =

∣

∣

∣

∣

∣

pcosh(σiα)−ν−1/2sinh(σiα)

cosh(σiβ )+ pν−1/2 sinh(σiβ )
· ν−1/2pcosh(σi(T −β ))−sinh(σi(T −β ))

ν−1/2cosh(σi(T −α))+ psinh(σi(T −α))

∣

∣

∣

∣

∣

1/2

.
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Fig. 1 A comparison of contraction factors as a function of eigenvaluesdi for classical (p= q= 0)
and optimized transmission conditions (p andq obtained by equioscillation).

Thus, if we assume the eigenvalues ofA can be anywhere in the interval[0,∞), then
the smallest convergence factor is obtained when|ρ(di = 0)|= |ρ(di → ∞)|, i.e., by
equioscillation.

4 Numerical experiments

To understand how convergence depends on the different parameters, we consider
for each ODE two different test cases:

Case A: The time intervalΩ = [0,3] is subdivided intoΩ1 = (0,1), Ω2 = (1,3)
(no overlap), and the objective function has no explicit target term (γ = 0). The
regularization parameter isν = 1.

Case B: The subdomains areΩ1 = (0,2.9) andΩ2 = (2.9,3), and the objective
function has a target term withγ = 10. The regularization parameter is stillν = 1.

For each test case, we plot in Figure 1 the convergence factorρ as a function of
the frequencydi, both for classical (p= q= 0) and optimized transmission condi-
tions. Based on the equioscillation criterion, we choosep = q = 0.37 for case A
and p = q = 0.55 for case B. We see that when classical conditions are used,the
method converges in case A for all frequencies, whereas in case B, the method only
converges when the lowest eigenvalue of the spatial operator is larger than about 2.
However, when optimized conditions are used, the parameters can be chosen so that
the method converges for all frequencies, and the spectral radius can be made much
smaller than in the classical case (0.37 versus about 0.9 forclassical).

Next, we solve numerically the optimal control problem (1) with governing PDE
∂tu= ∂xxu and regularization parametersν = 1, γ = 0. The problem is discretized
using the second-order Crank–Nicolson method with spatialand temporal mesh size
h= 1/32 and 1/64. The problem is then solved in parallel using two time windows
Ω1 = (0,1) and Ω2 = (1,3). Again we consider two cases: in the first case, we
use Dirichlet boundary conditions in space, which means theoperatorA in (1) has
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Fig. 2 Convergence of Algorithm (3a)–(3b) for different parameters and boundary conditions.

lowest eigenvalueπ2 ≈ 9.87. From Figure 2, we see that the method converges very
quickly with a rate that is indeed independent ofh (see remark after Theorem 2).
The fast convergence can be explained by Figure 1: the spectral radius curve beyond
the pointdi = 9.87 is very close to zero, so the convergence is very quick indeed.

In the second case, we consider the same PDE, but with Neumannboundary
conditions in space. In this case, zero is an eigenvalue of the spatial operator, mean-
ing we have to minimize the convergence factor over the wholeintervaldi ∈ [0,∞).
Here, the method with classical transmission conditions (p= q= 0) converges very
slowly, whereas convergence is much faster with optimized transmission conditions.
Again the convergence is independent of the spatial mesh size, as expected.

5 Conclusions

We have presented a first analysis of Schwarz methods in time for parabolic con-
trol problems. We have shown that classical Schwarz methodsalready use Robin
type transmission conditions, and introduced a parameter which can be chosen to
obtain substantially faster convergence, especially whenthe spatial operator has
eigenvalues close to zero. We are currently working on errorestimates for the many-
subdomain case and on higher order transmission conditions.
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