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1 Introduction

In this paper we introduce an additive Schwarz method for a Crouzeix-Raviart
Finite Volume Element (CRFVE) discretization of a second order elliptic
problem with discontinuous coefficients, where the discontinuities are inside
subdomains and across and along subdomain boundaries. For recent work
addressing domain decomposition methods for such problems, cf. Spillane
et al. [2014], Galvis and Efendiev [2010] and references therein. Depending
on the distribution of the coefficient in the model problem, the parameters
describing the GMRES convergence rate of the proposed method depend
linearly or quadratically on the mesh parameters H/h.

The CRFVE method was first introduced by Chatzipantelidis [1999] and
investigated further in Rui and Bi [2008].

Additive Schwarz Methods (ASM) for solving elliptic problems discretized
by the finite element method have been studied thoroughly, cf. Smith et al.
[1996], Toselli and Widlund [2005], but ASMs for conforming FVE discretiza-
tion have only been consider in Chou and Huang [2003], Zhang [2006]. For
the CR finite element discretization, there exists several results for second or-
der elliptic problems; cf. Sarkis [1997], Rahman et al. [2005], Brenner [1996],
Marcinkowski [1999]. In the CRFVE case, ASMs have not been studied.
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2 Discrete Problem

We consider the following elliptic boundary value problem

−∇ · (α(x)∇u) = f in Ω, (1)

u = 0 on ∂Ω,

where Ω is a bounded convex domain in R2 and f ∈ L2(Ω). The coeffi-
cient α(x) > a0 > 0 has the property α ∈ W 1,∞(Dj) with respect to a
nonoverlapping partitioning of Ω into open, connected Lipschitz polytopes
D := {Dj : j = 1, . . . , n} such that Ω̄ =

⋃n
j=1 D̄j . We assume that the re-

striction of the coefficient α to Dj has the property |α|1,∞,Dj ≤ C for all
j = 1, . . . , n, i.e., we assume that locally the coefficient is smooth and not
too much varying. For simplicity of presentation we require that α ≥ 1. This
last property can always be achieved by scaling (1).

3 The CRFVE method

In this section we present the Crouzeix-Raviart finite element (CRFE) and
finite volume (CRFVE) discretizations of a model second order elliptic prob-
lem with discontinuous coefficients inside and across prescribed substructures
boundaries.

We assume that there exists another nonoverlapping partitioning of Ω into
open, connected Lipschitz polytopes Ωi such that Ω =

⋃N
i=1Ωi . We also

assume that these subdomains form a coarse triangulation of the domain
which is shape regular as in Brenner and Sung [1999]. We define the sets
of Crouzeix-Raviart (CR) nodal points ΩCRh , ∂ΩCRh , ΩCRih and ∂ΩCRih as the
midpoints of edges of elements in Th corresponding to Ω, ∂Ω, Ωi and ∂Ωi,
respectively.

Now we introduce a quasi-uniform triangulation Th of Ω consisting of
closed triangle elements such that Ω̄ =

⋃
K∈Th K. Let hK be the diameter

of K and define h = maxK∈Th hK as the largest diameter of the triangles
K ∈ Th. We assume that the triangulation is defined in such way that ∂K’s
are aligned with ∂Dj ’s. This implies that the coefficient α(x) has the property
that α ∈W 1,∞(K) for all K ∈ Th.

Using this triangulation Th we may now introduce a dual mesh T ∗h with
elements called control volumes. Let zK be an interior point of K ∈ Th, we
connect it with straight lines to the vertices of K such that K is partitioned
into three subtriangles, Ke for each edge e ∈ ∂K ∩ Ω interior to Ω. Denote
this new finer triangulation of Ω by T̃h. With each edge e we associate a
corresponding control volume be consisting of the two subtriangles of T̃h which
have e as an common edge, cf Figure 1. Define T ∗h = {be : e ∈ Ein

h } to be the
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set of all such control volumes, where Ein
h is the set of all interior edges of

the elements in Th.
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Fig. 1: The control volume be for an edge e which is the common edge to the triangles

K+e and K−e. Here me is the midpoint of e, ne normal unit vector to e, zK+e and zK−e

are the interior points of the the triangles K+e and K−e which share the edge e.

Let Vh be the nonconforming CR finite element space defined on the tri-
angulation Th,

Vh = Vh(Ω) := {u ∈ L2(Ω) : v|K ∈ P1, K ∈ Th v(m) = 0 m ∈ ∂ΩCRh },

and let V ∗h be its dual control volume space

V ∗h = V ∗h (Ω) := {u ∈ L2(Ω) : v|be ∈ P0, be ∈ T ∗h v(m) = 0 m ∈ ∂ΩCRh }.

Obviously, V ∗h = span{χe(x) : e ∈ Ein
h }, where {χe} are the characteristic

functions of the control volumes {be}. Now, let I∗h : Vh → V ∗h be the standard
interpolation operator, i.e.

I∗hu =
∑
e∈Einh

u(me)χe.

We may then define the CRFVE approximation uh of (1) as the solution
to the following problem: Find uh ∈ Vh such that

ah(uh, I
∗
hv) = (f, I∗hv) , v ∈ Vh (2)

where the bilinear form is defined as

ah(u, v) = −
∑
e∈Einh

v(me)

∫
∂be

α(x)∇u · n ds u ∈ Vh, v ∈ V ∗h .

where n is the outward unit normal vector of the control volume be.
The corresponding CR finite element bilinear form is defined as: a(u, v) =∑
K∈Th

∫
K
α(x)∇u · ∇v dx, and we define the energy norm induced by a(·, ·)

as
‖ · ‖a =

√
a(·, ·). (3)
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4 The GMRES Method

The linear system of equations which arises from problem (2) is in general
nonsymmetric. We may solve such a system using a preconditioned GMRES
method; cf. Saad and Schultz [1986] and Eisenstat et al. [1983]. This method
has proven to be quite powerful for a large class of nonsymmetric problems.
The theory originally developed for L2(Ω) in Eisenstat et al. [1983] can easily
be extended to an arbitrary Hilbert space; see Cai and Widlund [1989].

In this paper, we use GMRES to solve the linear system of equations

Tuh = g, (4)

where T is a nonsymmetric, nonsingular operator, g ∈ Vh is the right hand
side and uh ∈ Vh is the solution vector. The formulation of T will be given
in the next section.

The main idea of the GMRES method is to solve a least square problem in
each iteration, i.e. at step m we approximate the exact solution uh = T−1g
by a vector um ∈ Km which minimizes the a-norm (energy norm) of the
residual, cf. (3), where Km is the m-th Krylov subspace defined as Km =
span

{
r0, T r0, · · ·Tm−1r0

}
and r0 = g − Tu0. In other words, zm solves

min
z∈Km

‖g − T (u0 + z)‖a.

Thus, the m-th iterate is um = u0 + zm.
The convergence rate of the GMRES method is usually expressed in terms

of the following two parameters

cp = inf
u 6=0

a(Tu, u)

‖u‖2a
and Cp = sup

u 6=0

‖Tu‖a
‖u‖a

.

The decrease of the norm of the residual in a single step is described in the
next theorem.

Theorem 1 (Eisenstat-Elman,Schultz). If cp > 0, then the GMRES
method converges and after m steps, the norm of the residual is bounded
by

‖rm‖a ≤

(
1−

c2p
C2
p

)m/2
‖r0‖a, (5)

where rm = g − Tum.
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5 An Additive Average Method

In this section we introduce the additive Schwarz method for the discrete
problem (2) and provide bounds on the convergence rate, both for the cases
of symmetric and nonsymmetric preconditioners.

5.1 Decomposition of Vh(Ω)

We decompose the original space into

Vh(Ω) = V0(Ω) + V1(Ω) + · · ·+ VN (Ω), (6)

where for i = 1, . . . , N we have defined Vi(Ω) as the restriction of Vh(Ω) to Ωi
with functions vanishing on ∂ΩCRih and as well as on the other subdomains.
The coarse space V0(Ω) is defined as the range of the interpolation operator
IA. For u ∈ Vh(Ω), we let IAu ∈ Vh(Ω) be defined as

IAu :=

{
u(x), x ∈ ∂ΩCRih
ūi, x ∈ ΩCRih

i = 1, . . . , N, (7)

where

ūi :=
1

ni

∑
x∈∂ΩCR

ih

u(x). (8)

Here ni is the number of nodal points of ∂ΩCRih .
We also assume that Th(Ωi) inherits the shape regular and quasi-uniform

triangulation for each Ωi with mesh parameters hi and Hi = diam(Ωi). The
layer along ∂Ωi consisting of unions of triangles K ∈ T (Ωi) which touch ∂Ωi
is denoted as Ωδi . Corresponding to each layer we define the maximum and
minimum values of the coefficient α as

αi := sup
x∈Ω̄δi

α(x) and αi := inf
x∈Ω̄δi

α(x),

respectively.
For i = 0, . . . , N we define the two types of projection like operators

T
(k)
i : Vh → Vi(Ω), k = 1, 2 as

a(T
(1)
i u, v) = ah(u, I∗hv) ∀v ∈ Vi(Ω), (9)

for the symmetric preconditioner, and

ah(T
(2)
i u, v) = ah(u, I∗hv) ∀v ∈ Vi(Ω), (10)
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for the non-symmetric preconditioner. Each of these problems have a unique
solution. We now introduce

T
(k)
A := T

(k)
0 + T

(k)
1 + · · ·+ T

(k)
N , k = 1, 2, (11)

which allow us to replace the original problem, respectively for k = 1 and
k = 2, by the equation

T
(k)
A u = g(k), (12)

where g(k) =
∑N
i=0 gi and g

(k)
i = T

(k)
i u. Note that g

(k)
i may be computed

without knowing the solution u of (2).

Theorem 2. There exists h0 > 0 such that for all h < h0, k = 1, 2, and
u ∈ Vh

‖T (k)u‖a ≤ C‖u‖a,

a(T (k)u, u) ≥ cmax
i

αi
αi

(
Hi

hi

)−2

a(u, u),

where C, c are positive constants independent of α, αi
αi

, hi and Hi for i =

1, . . . , N.

For certain distributions of α we may improve the estimate.

Proposition 1. There exists h0 > 0 such that for all h < h0, u ∈ Vh and
αi ≤ α(x) in Ωi \Ωδi

‖T (k)u‖a ≤ C‖u‖a,

a(T (k)u, u) ≥ cmax
i

αi
αi

(
Hi

hi

)−1

a(u, u) ∀u ∈ Vh,

where C, c are positive constants independent of α, αi
αi

, hi and Hi for i =

1, . . . , N.

6 Numerical results

In this section we present some preliminary numerical results for the pro-
posed method with the symmetric preconditioner, i.e. for k = 1 in (12). All
experiments are done for problem (1) on a unit square domain Ω = (0, 1)2.
The coefficient α is equal to 2 + sin(100πx) sin(100πy) except for the areas
marked with red where α equals α1(2 + sin(100πx) sin(100πy)). The right
hand side is chosen as f = 1.

The numerical solution is found by using the Generalized minimal residual
method (GMRES). We run the method until the l2 norm of the residual is
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reduced by a factor 106, i.e., as soon as ‖ri‖2/‖r0‖2 ≤ 10−6. For each of the
problems under consideration the number of iterations until convergence for
different values of α1 are shown in Table 1.

The numerical results from our two examples shows that the performance
of the method agrees with the theory. If the inclusions are in the interior of
the subdomains the method is completely insensitive to any discontinuities in
the coefficient, while if the inclusions are on the subdomain layer the method
depends strongly on the jumps in the coefficient.

Problem 1. Problem 2.

α1 1e0 1e1 1e2 1e3 1e4 1e5 1e6

Problem 1. 40 40 40 40 40 40 40

Problem 2. 40 66 108 177 233 276 316

Table 1: Number of iterations until convergence for the solution of (1) for different values

of α1 in the distributions of the coefficient α given in Figures 2a and 2b.
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