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1 Introduction

We present two new types of Waveform Relaxation (WR) methods for hy-
perbolic problems based on the Dirichlet-Neumann and Neumann-Neumann
algorithms, and present convergence results for these methods. The Dirichlet-
Neumann algorithm for elliptic problems was first considered by Bjørstad &
Widlund [2]; the Neumann-Neumann algorithm was introduced by Bourgat
et al. [3]. The performance of these algorithms for elliptic problems is now
well understood, see for example the book [13].

To solve time-dependent problems in parallel, one can either discretize in
time to obtain a sequence of steady problems, and then apply domain de-
composition algorithms to solve the steady problems at each time step in
parallel, or one can first discretize in space and then apply WR to the large
system of ordinary differential equations (ODEs) obtained from the spatial
discretization. WR has its roots in the work of Picard and Lindelöf, who stud-
ied existence and uniqueness of solutions of ODEs in the late 19th century.
Lelarasmee, Ruehli and Sangiovanni-Vincentelli [11] rediscovered WR as a
parallel method for the solution of ODEs. The main computational advan-
tage of WR is parallelization, and the possible use of different discretizations
in different space-time subdomains.

Domain decomposition methods for elliptic PDEs can be extended to time-
dependent problems by using the same decomposition in space. This leads to
WR type methods, see [1]. The systematic extension of the classical Schwarz
method to time-dependent parabolic problems was started independently in
[8, 9]. Like WR algorithms in general, the so-called Schwarz Waveform Relax-
ation algorithms (SWR) converge relatively slowly, except if the time window
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size is short. A remedy is to use optimized transmission conditions, which
leads to much faster algorithms, see [4] for parabolic problems, and [5] for
hyperbolic problems. More recently, we studied the WR extension of the
Dirichlet-Neumann and Neumann-Neumann methods for parabolic problems
[6, 12, 10]. We proved for the heat equation that on finite time intervals,
the Dirichlet-Neumann Waveform Relaxation (DNWR) and the Neumann-
Neumann Waveform Relaxation (NNWR) methods converge superlinearly
for an optimal choice of the relaxation parameter. DNWR and NNWR also
converge faster than classical and optimized SWR in this case.

In this paper, we define DNWR and NNWR for the second order wave
equation

∂ttu− c2∆u = f(x, t), x ∈ Ω, 0 < t < T,

u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ Ω, (1)

u(x, t) = g(x, t), x ∈ ∂Ω, 0 < t < T,

where Ω ⊂ Rd, d = 1, 2, 3, is a bounded domain with a smooth boundary, and
c denotes the wave speed, and we analyze the convergence of both algorithms
for the 1d wave equation.

2 Domain decomposition and algorithms

To explain the new algorithms, we assume for simplicity that the spatial
domain Ω is partitioned into two non-overlapping subdomains Ω1 and Ω2.
We denote by ui the restriction of the solution u of (1) to Ωi, i = 1, 2, and
by ni the unit outward normal for Ωi on the interface Γ := ∂Ω1 ∩ ∂Ω2.

The Dirichlet-Neumann Waveform Relaxation algorithm (DNWR) con-
sists of the following steps: given an initial guess h0(x, t), t ∈ (0, T ) along the
interface Γ × (0, T ), compute for k = 1, 2, ... with uk1 = g, on ∂Ω1 \ Γ and
uk2 = g, on ∂Ω2 \ Γ the approximations

∂ttu
k
1 − c2∆uk1 = f, in Ω1,
uk1(x, 0) = u0(x), in Ω1,

∂tu
k
1(x, 0) = v0(x), in Ω1,

uk1 = hk−1, on Γ,

∂ttu
k
2 − c2∆uk2 = f, in Ω2,
uk2(x, 0) = u0(x), in Ω2,

∂tu
k
2(x, 0) = v0(x), in Ω2,
∂n2

uk2 = −∂n1
uk1 , on Γ,

hk(x, t) = θuk2
∣∣
Γ×(0,T ) + (1− θ)hk−1(x, t),

(2)

where θ ∈ (0, 1] is a relaxation parameter.
The Neumann-Neumann Waveform Relaxation algorithm (NNWR) starts

with an initial guess w0(x, t), t ∈ (0, T ) along the interface Γ × (0, T ) and
then computes for θ ∈ (0, 1] simultaneously for i = 1, 2 with k = 1, 2, ...
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∂ttu
k
i − c2∆uki =f, in Ωi,
uki (x, 0)=u0(x),in Ωi,

∂tu
k
i (x, 0)=v0(x), in Ωi,

uki =g, on ∂Ωi \ Γ,
uki =wk−1, on Γ,

∂ttψ
k
i − c2∆ψki =0, in Ωi,
ψki (x, 0)=0, in Ωi,

∂tψ
k
i (x, 0)=0, in Ωi,

ψki =0, on ∂Ωi \ Γ,
∂ni

ψki =∂n1
uk1 + ∂n2

uk2 ,on Γ,

wk(x, t) = wk−1(x, t)− θ
[
ψk1
∣∣
Γ×(0,T ) + ψk2

∣∣
Γ×(0,T )

]
.

(3)

3 Kernel estimates and convergence analysis

We present the case d = 1, with Ω = (−a, b), Ω1 = (−a, 0) and Ω2 = (0, b).
By linearity, it suffices to study the error equations, f(x, t) = 0, g(x, t) = 0,
u0(x) = v0(x) = 0 in (2) and (3), and to examine convergence to zero.

Our convergence analysis is based on Laplace transforms. The Laplace
transform of a function u(x, t) with respect to time t is defined by û(x, s) =
L{u(x, t)} :=

∫∞
0
e−stu(x, t) dt, s ∈ C. Applying a Laplace transform to the

DNWR algorithm in (2) in 1d, we obtain for the transformed error equations

(s2−c2∂xx)ûk1(x, s)=0 in (−a, 0),
ûk1(−a, s)=0,

ûk1(0, s)=ĥk−1(s),

(s2−c2∂xx)ûk2(x, s)=0 in (0, b),
∂xû

k
2(0, s)=∂xû

k
1(0, s),

ûk2(b, s)=0,

ĥk(s) = θûk2(0, s) + (1− θ)ĥk−1(s).
(4)

Solving the two-point boundary value problems in (4), we get

ûk1 = ĥk−1(s)
sinh(as/c) sinh

(
(x+ a) sc

)
, ûk2 = ĥk−1(s) coth(as/c)

cosh(bs/c) sinh
(
(x− b) sc

)
,

and inserting them into the updating condition (last line in (4)), we get by
induction

ĥk(s) = [1− θ − θ coth(as/c) tanh(bs/c)]
k
ĥ0(s), k = 1, 2, . . . (5)

Similarly, the Laplace transform of the NNWR algorithm in (3) for the error
equations yields for the subdomain solutions

ûk1(x, s) = ŵk−1(s)
sinh(as/c) sinh

(
(x+ a) sc

)
, ûk2(x, s) = − ŵk−1(s)

sinh(bs/c) sinh
(
(x− b) sc

)
,

ψ̂k1 (x, s) = ŵk−1(s)Ψ(s)
cosh(as/c) sinh

(
(x+ a) sc

)
, ψ̂k2 (x, s) = ŵk−1(s)Ψ(s)

cosh(bs/c) sinh
(
(x− b) sc

)
,

where Ψ(s) = [coth(as/c) + coth(bs/c)]. Therefore, in Laplace space the up-
dating condition in (3) becomes
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ŵk(s) =

[
1− θ

(
2 +

coth(as/c)

coth(bs/c)
+

coth(bs/c)

coth(as/c)

)]k
ŵ0(s), k = 1, 2, . . . (6)

Theorem 1 (Convergence, symmetric decomposition). For a symmet-
ric decomposition, a = b, convergence is linear for the DNWR (2) with
θ ∈ (0, 1), θ 6= 1

2 , and for the NNWR (3) with θ ∈ (0, 1), θ 6= 1
4 . If θ = 1

2 for
DNWR, or θ = 1

4 for NNWR, convergence is achieved in two iterations.

Proof. For a = b, equation (5) reduces to ĥk(s) = (1 − 2θ)kĥ0(s), which
has the simple back transform hk(t) = (1 − 2θ)kh0(t). Thus for the DNWR
method, the convergence is linear for 0 < θ < 1, θ 6= 1

2 . For θ = 1
2 , we have

h1(t) = 0. Hence, one more iteration produces the desired solution on the
whole domain.

For the NNWR algorithm, inserting a = b into equation (6), we obtain
similarly wk(t) = (1− 4θ)kw0(t), which leads to the second result. ut

We next analyze the case of an asymmetric decomposition, a 6= b.

Lemma 1. Let a, b > 0 and s ∈ C, with Re(s) > 0. Then, we have the
identity

Gab (s) := coth(as/c) tanh(bs/c)− 1

= 2

∞∑
m=1

e−2ams/c− 2

∞∑
n=1

(−1)n−1e−2bns/c− 4

∞∑
n=1

∞∑
m=1

(−1)n−1e−2(bn+am)s/c.

Proof. Using that
∣∣e−2bs/c∣∣ < 1 for Re(s) > 0, we expand

(
1 + e−2bs/c

)−1
into an infinite binomial series to obtain

tanh

(
bs

c

)
=
e

bs
c − e− bs

c

e
bs
c + e−

bs
c

=
(

1− e− 2bs
c

)(
1 + e−

2bs
c

)−1
=1−2

∞∑
n=1

(−1)n−1e−
2bns

c .

Similarly, we get coth(as/c) = 1 + 2

∞∑
m=1

e−
2ams

c , and multiplying the two and

subtracting 1, we obtain the expression for Gab (s) in the Lemma. ut

Using Gab (s) from Lemma 1, we obtain for (5)

ĥk(s) = {(1− 2θ)− θGab (s)}k ĥ0(s). (7)

Now if θ = 1
2 , we see that the linear factor in (7) vanishes, and convergence

will be governed by convolutions of Gab (s). We show next that this choice also
gives finite step convergence, but the number of steps depends on the length
of the time window T .

Theorem 2 (Convergence of DNWR, asymmetric decomposition).
Let θ = 1

2 . Then the DNWR algorithm converges in at most k + 1 iterations
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for two subdomains of lengths a 6= b, if the time window length T satisfies
T/k ≤ 2 min {a/c, b/c}, where c is the wave speed.

Proof. With θ = 1
2 we obtain from (7) for k = 1, 2, . . .

ĥk(s) =

(
−1

2

)k
{Gab (s)}k ĥ0(s) =

[
−e− 2as

c + e−
2bs
c +

( ∞∑
n>1

(−1)n−1e−
2bns

c

−
∞∑
m>1

e−
2ams

c + 2

∞∑
m=1

∞∑
n=1

(−1)n−1e−
2(am+bn)s

c

)]k
ĥ0(s) = (−1)ke−

2aks
c ĥ0(s)

+e−
2bks

c ĥ0(s)+

∞∑
l>k

p
(k)
l e−

2bls
c +

∞∑
l>k

q
(k)
l e−

2als
c +

∑
m+n≥k

r(k)m,ne
− 2(am+bn)s

c

 ĥ0(s),

(8)

p
(k)
l , q

(k)
l , r

(k)
m,n being the corresponding coefficients. Using the inverse Laplace

transform
L−1

{
e−αsĝ(s)

}
= H(t− α)g(t− α), (9)

H(t) being Heaviside step function, we obtain

hk(t) = (−1)kh0(t− 2ak/c)H(t− 2ak/c) + h0(t− 2bk/c)H(t− 2bk/c)

+

∞∑
l>k

p
(k)
l h0(t− 2bl/c)H(t− 2bl/c) +

∞∑
l>k

q
(k)
l h0(t− 2al/c)H(t− 2al/c)

+
∑

m+n≥k

r(k)m,nh
0(t− 2(am+ bn)/c)H(t− 2(am+ bn)/c).

Now if we choose our time window such that T ≤ 2kmin
{
a
c ,

b
c

}
, then hk(t) =

0, and therefore one more iteration produces the desired solution on the entire
domain. ut

Using Gab (s) from Lemma 1, we can also rewrite (6) in the form

ŵk(s) =
{

(1− 4θ)− θ
(
Gab (s) +Gba(s)

)}k
ŵ0(s), k = 1, 2, . . . , (10)

and we see that for NNWR, the choice θ = 1
4 removes the linear factor.

Theorem 3 (Convergence of NNWR, asymmetric decomposition).
Let θ = 1

4 . Then the NNWR algorithm converges in at most k + 1 iterations
for two subdomains of lengths a 6= b, if the time window length T satisfies
T/k ≤ 4 min {a/c, b/c}, c being again the wave speed.

Proof. With θ = 1
4 we obtain from (10) with a similar calculation as in (8)
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ŵk(s) =

(
−1

4

)k [
Gab (s) +Gba(s)

]k
ŵ0(s) =

[
−
∞∑
m=1

(
e−

4ams
c + e−

4bms
c

)

+

∞∑
m=1

∞∑
n=1

(−1)n−1
(
e−

2(am+bn)s
c +e−

2(an+bm)s
c

)]k
ŵ0(s) = (−1)ke−

4aks
c ŵ0(s)

+

(−1)ke−
4bks

c +

∞∑
l>k

d
(k)
l e−

4als
c +

∞∑
l>k

z
(k)
l e−

4bls
c +

∑
m+n≥2k

j(k)m,ne
− 2(am+bn)s

c

ŵ0(s),

where d
(k)
l , z

(k)
l , j

(k)
m,n are the corresponding coefficients. Now we use (9) to

back transform and obtain

wk(t) = (−1)kw0(t−4ak/c)H(t−4ak/c)+(−1)kw0(t−4bk/c)H(t−4bk/c)

+

∞∑
l>k

d
(k)
l w0(t− 4al/c)H(t− 4al/c) +

∞∑
l>k

z
(k)
l w0(t− 4bl/c)H(t− 4bl/c)

+
∑

m+n≥2k

j(k)m,nw
0(t− 2(am+ bn)/c)H(t− 2(am+ bn)/c).

So for T ≤ 4kmin
{
a
c ,

b
c

}
, we get wk(t) = 0, and the conclusion follows. ut

4 Numerical Experiments

We perform now numerical experiments to measure the actual convergence
rate of the discretized DNWR and NNWR algorithms for the model problem

∂ttu− ∂xxu = 0, x ∈ (−3, 2), t > 0,

u(x, 0) = 0, ut(x, 0) = xe−x, − 3 < x < 2, (11)

u(−3, t) = −3e3t, u(2, t) = 2e−2t, t > 0,

with Ω1 = (−3, 0) and Ω2 = (0, 2), so that a = 3 and b = 2 in (4, 5, 6).
We discretize the equation using the centered finite difference in both space
and time (Leapfrog scheme) on a grid with ∆x = ∆t = 2×10−2. The error
is calculated by ‖u − uk‖L∞(0,T ;L2(Ω)), where u is the discrete monodomain

solution and uk is the discrete solution in k-th iteration.
We test the DNWR algorithm by choosing h0(t) = t2, t ∈ (0, T ] as an

initial guess. In Figure 1, we show the convergence behavior for different
values of the parameter θ for T = 16 on the left, and on the right for the
best parameter θ = 1

2 for different time window length T . Note that for some
values of θ (> 0.7) we get divergence. For the NNWR method, with the
same initial guess, we show in Figure 2 on the left the convergence curves
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Fig. 1 Convergence of DNWR for various values of θ and T = 16 on the left, and for
various lengths T of the time window and θ = 1
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Fig. 2 Convergence of NNWR with various values of θ for T = 16 on the left, and for

various lengths T of the time window and θ = 1
4
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Fig. 3 Comparison of DNWR, NNWR, and SWR for T = 4 on the left, and T = 10 on

the right

for different values of θ for T = 16, and on the right the results for the best
parameter θ = 1

4 for different time window lengths T .
We finally compare in Figure 3 the performance of the DNWR and NNWR

algorithms with the Schwarz Waveform Relaxation (SWR) algorithms from
[5] with and without overlap. We consider the same model problem (11) with
Dirichlet boundary conditions along the physical boundary. We use for the
overlapping Schwarz variant an overlap of length 24∆x, where ∆x = 1/50.
We observe that the DNWR and NNWR algorithms converge as fast as the
Schwarz WR algorithms for smaller time windows T . Due to the local nature
of the Dirichlet-to-Neumann operator in 1d [5], SWR converges in a finite
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number of iterations just like DNWR and NNWR. In higher dimensions,
however, SWR will no longer converge in a finite number of steps, but DNWR
and NNWR will [7].

5 Conclusions

We introduced the DNWR and NNWR algorithms for the second order wave
equation, and analyzed their convergence properties for the 1d case and a
two subdomain decomposition. We showed that for a particular choice of the
relaxation parameter, convergence can be achieved in a finite number of steps.
Choosing the time window lengh carefully, these algorithms can be used to
solve such problems in two iterations only. For a detailed analysis for the case
of multiple subdomains, see [7].
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