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1 Introduction

In this paper, we present two variants of the Additive Schwarz Method (ASM)
for a Crouzeix-Raviart finite volume (CRFV) discretization of the second or-
der elliptic problem with discontinuous coefficients, where the discontinuities
are only across subdomain boundaries. The resulting system, which is non-
symmetric, is solved using the preconditioned GMRES iteration, where in
one variant of the ASM the preconditioner is symmetric while in the other
variant it is nonsymmetric. The proposed methods are almost optimal, in
the sense that the convergence of the GMRES iteration, in the both cases,
depend only poly-logarithmically on the mesh parameters.

In the CRFV method, the equations are discretized on a mesh which is dual
to a primal mesh where the nonconforming Crouzeix-Raviart finite element
space is defined, it is the space in which we seek for an approximation of the
solution, cf. Chatzipantelidis [1999].

There are many results concerning Additive Schwarz Methods (ASM) for
solving symmetric systems, those arising from the finite element discretization
of second order elliptic problems, cf. e.g. Toselli and Widlund [2005], but
only a few papers that consider the FV discretization using the standard
finite element space, cf. Chou and Huang [2003], Zhang [2006]. There is also
a number of results focused on iterative methods for the CR finite element for
second order problems; cf. Brenner [1996], Marcinkowski and Rahman [2008],
Sarkis [1997].
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The purpose of this paper is to construct two parallel algorithms based on
the edge based discrete space decomposition in the abstract Schwarz scheme.
The algorithms are very similar in application.

We present almost optimal estimates for the convergence of the GMRES
iteration applied to the preconditioned system, showing that the minimum
eigenvalue of the preconditioned operator in the estimate, grows like (1 +
log(H/h))−2, where H is the maximal diameter of the subdomains and h is
the fine mesh size parameter. Some preliminary results of numerical tests are
also presented.

2 Discrete problem

In this section we present the Crouzeix-Raviart finite element (CRFE) and
finite volume (CRFV) discretizations of a model second order elliptic problem
with discontinuous coefficients across prescribed substructures boundaries.

Let Ω be a polygonal domain in the plane. We assume that there exists a
partition of Ω into disjoint polygonal subdomains Ωk such that Ω =

⋃N
k=1Ωk

with Ωk ∩Ωl being an empty set, an edge or a vertex (crosspoint). We also
assume that these subdomains form a coarse triangulation of the domain
which is shape regular as in Brenner and Sung [1999]. We introduce a global
interface Γ =

⋃
i ∂Ωi \ ∂Ω which plays an important role in our study.

Our model differential problem is to find u∗ such that

−∇A(x)∇u∗(x) = f(x) x ∈ Ω (1)

u∗(s) = 0 s ∈ ∂Ω,

where A(x) is the symmetric coefficients matrix.
The standard variational (weak) formulation is to find u∗ ∈ H1

0 (Ω) such
that a(u∗, v) =

∫
Ω
fv dx for all v ∈ H1

0 (Ω), where f ∈ L2(Ω), and a(u, v) =∑N
k=1

∫
Ωk
∇uTA(x)∇v dx. We assume that the restriction of the symmetric

coefficients matrices to Ωk: Ak = A|Ωk
is in W 1,∞(Ωk) and bounded and

positive definite, i.e.

∃αk > 0 ∀x ∈ Ωk ∀ξ ∈ R2 ξTA(x)ξ ≥ αk|ξ|2, (2)

∃Mk > 0 ∀x ∈ Ωk ∀ξ, µ ∈ R2 µTA(x)ξ ≤ Mk|µ||ξ|. (3)

Here |ξ| =
√
ξT ξ. We can always scale the matrix functions A in such a way

that all αk ≥ 1. Thus we assume that the restriction of the coefficient matrices
toΩk:Ak = A|Ωk

is inW 1,∞(Ωk) with the following bounds: ‖Ak‖W 1,∞(Ωk) ≤
C, and Mk ≤ Ceαk, i.e. we assume that the coefficient matrix locally is
smooth, isotropic and not too much varying.

We assume that there exists a sequence of quasiuniform triangulations:
Th = Th(Ω) = {τ}, of Ω such that any element τ of Th is contained in only
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one subdomain, as a consequence any subdomain Ωk inherits a sequence of
local triangulations: Th(Ωk) = {τ}τ⊂Ωk,τ∈Th

.

V
2

b
e

V
1

τ
2τ

1

Fig. 1: The control volume be for an edge e which is the common edge to the
triangles τ1 and τ2.

Let h = maxτ∈Th(Ω) diam(τ) be the mesh size parameter of the triangula-
tion. We introduce the following sets of Crouzeix-Raviart (CR) nodal points
or nodes: let ΩCRh , ∂ΩCRh , ΩCRk,h , ∂Ω

CR
k,h , ΓCRh , and ΓCRkl,h be the midpoints of

edges of elements in Th which are on Ω, ∂Ω,Ωk, ∂Ωk, Γ , and Γkl, respec-
tively. Here Γkl is an interface, an open edge, which is shared by the two
subdomains, Ωk and Ωl. Note that ΓCRh =

⋃
Γkl⊂Γ Γ

CR
kl,h. Now we define a

Fig. 2: Edge midpoint corresponding to the degrees of freedom of the non-
conforming Crouzeix-Raviart element.

dual triangulation T ∗h to the initial one. For an edge e of an element not on
∂Ω i.e. being the common edge of two elements τ1 and τ2 i.e. e = ∂τ1 ∩ ∂τ2
we introduce two triangles: Vk ⊂ τk obtained by connecting the ends of e
to the centroid (barycenter) of τk for k = 1, 2. Then, let the control volume
be = V1∪e∪V2, cf. Figure 1. For an edge of an element τ contained in ∂Ω let
the control volume be the triangle V obtained analogously i.e. by connecting
the ends of e with the centroid of τ . Then let T ∗h = {be}e∈Eh

, where Eh is
the set of all edges of elements in Th.

Next we introduce two discrete spaces contained in L2(Ω):

Vh := {v ∈ L2(Ω) : v|τ ∈ P1, τ ∈ Th v(m) = 0 m ∈ ∂ΩCRh },
V ∗h := {v ∈ L2(Ω) : v|be ∈ P0, be ∈ T ∗h v(m) = 0 m ∈ ∂ΩCRh }.
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The first space is the classical nonconforming Crouzeix-Raviart finite element
space, cf. Figure 2, and the second space is the space of piecewise constant
functions which are zero on the boundary of the domain.

Let {φm}m∈ΩCR
h

be the standard CR nodal basis of V h and {ψm}m∈ΩCR
h

be
the standard basis of V ∗h consisting of characteristic functions of the control
volumes.

We also introduce two interpolation operators, Ih and I∗h, defined for any
function that has properly defined and unique values at each midpoint m ∈
ΩCRh :

Ih(u) =
∑

m∈ΩCR
h

u(m)φm, I∗h(u) =
∑

m∈ΩCR
h

u(m)ψm.

Note that IhI
∗
hu = u for any u ∈ Vh and I∗hIhu = u for any u ∈ V ∗h . We

also define a nonsymmetric in general bilinear form ah : Vh × V ∗h → R:

aCRFVh (u, v) = −
∑
e∈Ein

h

v(me)

∫
∂be

nTA(s)∇u ds, (4)

where n is a normal unit vector outer to ∂be, me is the median (midpoint) of
the edge e and Einh ⊂ Eh is the set of all interior edges, i.e. those which are
not on ∂Ω.

Then our discrete CRFV problem is to find u∗ ∈ Vh such that:

aFVh (u∗, v) = f(I∗hv) ∀v ∈ Vh (5)

for aFVh (u, v) := aCRFVh (u, I∗hv). In general the problem is nonsymmetric
unless the coefficients matrix is a piecewise constant matrix over Th. One can
prove that there exists h0 > 0 such that for all h ≤ h0 the form aFVh (u, v)
is positive definite over Vh. Thus this problem has a unique solution. Some
error estimates are also proven, cf. Loneland et al. [2014a] or Chatzipantelidis
[1999] in the case of the smooth coefficients.

3 Additive Schwarz method

In this section, we construct our ASM based on the abstract framework for
additive Schwarz methods, see Toselli and Widlund [2005].

First we introduce the local spaces being the restriction of Vh to Ωk and
its subspace with discrete CR zero boundary conditions:

Wk := {v|Ωk
: v ∈ Vh}, Wk,0 := {v ∈Wk : w(m) = 0 m ∈ ∂ΩCRk,h } ⊂Wk.

Let Pk : Wk → Wk,0 be the orthogonal projection onto Wk,0 in terms of the
local bilinear form: aFEk,h (u, v) =

∑
τ∈Th(Ωk)

∫
τ
∇uTA∇v dx, i.e.
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aFEk,h (Pku, v) = aFEk,h (u, v) ∀v ∈Wk,0.

Then Hku = u − Pku will be the discrete harmonic part of u ∈ Wk. If
u = Hku then we say that u ∈Wk is discrete harmonic. A function u ∈ Vh is
discrete harmonic if its all restrictions to subdomains are discrete harmonic
i.e. u|Ωk

= Hku|Ωk
for k = 1, . . . , N . We also define an edge function θΓkl

∈ Vh
as a discrete harmonic function such that it is equal to one at CR nodes
interior to Γkl and zero at all other CR nodes on the interface.

We now define the decomposition of Vh. Let V0 = Span(θΓkl
)Γkl⊂Γ be the

coarse space, Vkl be the edge space associated with the interface Γkl formed
by discrete harmonic functions that are zero at each x ∈ ΓCRh \ΓCRkl,h. Finally
let Vk be the space Wk,0 extended by zero to all remaining subdomains. Thus

we have the following decomposition: Vh = V0 +
∑
Γkl⊂Γ Vkl +

∑N
k=1 Vk.

Note that this is a direct sum and that the subspace V0 +
∑
Γkl⊂Γ Vkl is

aFEh (u, v) =
∑
k a

FE
k,h (u, v) orthogonal to

∑N
k=1 Vk. Now we define the first

type of projection like operators: the coarse and the local operators, T symk :
Vh → Vk, as

aFEh (T symk u, v) = aFVh (u, v) ∀v ∈ Vk, k = 0, 1, . . . , N,

the edge related operators, T symkl : Vh → Vkl, as

aFEh (T symkl u, v) = aFVh (u, v) ∀v ∈ Vkl, Γkl ⊂ Γ.

Note that T symk u can be computed by solving a symmetric local discrete
CRFE Dirichlet problem and then extended by zero to the other subdomains.

The second type of operators is based solely on the nonsymmetric bilinear
form aFVh (u, v). We define the coarse and the local operators, Tnsymk : Vh →
Vk, as

aFVh (Tnsymk u, v) = aFVh (u, v) ∀v ∈ Vk, k = 0, 1, . . . , N,

and the edge related operators, Tnsymkl : Vh → Vkl, as

aFVh (Tnsymkl u, v) = aFVh (u, v) ∀v ∈ Vkl, Γkl ⊂ Γ.

We define the two ASM operators as follows:

T type :=
∑
Γkl⊂Γ

T typekl +

N∑
k=0

T typek ,

where the super-index type is either sym or nsym. We can replace our discrete
CRFV equation (5) by the following system:

T typeu∗h = gtype, (6)
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where gtype = gtype0 +
∑
Γkl⊂Γ g

type
kl +

∑N
k=1 g

type
k , gtype0 = T type0 u∗h, gtypekl =

T typekl u∗h g
type
k = T typek u∗h, and type ∈ {sym, nsym} .

We apply the GMRES method in the inner product aFEh (u, v), to the new
system (6), and get the the following estimate (see Eisenstat et al. [1983] for
the case of standard l2 inner product, and Cai and Widlund [1992] for the
general case):

‖g − T typeuj‖a ≤
(

1− α2
min

α2
max

)j/2
‖g − T typeu0‖a. (7)

where αmin = minu∈Vh\{0}
aFE
h (T typeu,u)
‖u‖2a

and αmax = maxu∈Vh\{0}
‖T typeu‖a
‖u‖a ,

‖v‖a :=
√
aFEh (v, v), and T type is either T sym or Tnsym.

Next, we present the main theoretical result of this paper, namely an
estimate of the convergence rate of the GMRES method, which is the same
for both preconditioned systems (6). The proof of this theorem is an extension
of the proof in Marcinkowski et al. [2014] to the case of CRFV and will be
published in Loneland et al. [2014b].

Theorem 1. There exists h0 > 0 such that for all h < h0 and u ∈ Vh

‖T typeu‖a ≤ C‖u‖a, aFE(T typeu, u) ≥ c
(

1 + log

(
H

h

))−2
‖u‖2a

where T type is either T sym or Tnsym, C and c are positive constants indepen-
dent of h, H = maxk=1,...,N diam(Ωk), and the magnitudes of αk and Mk,
but they depend on Mk

αk
≤ Ce, cf. (2)-(3).

This theorem together with (7) gives as an estimate of the rate of conver-
gence of the GMRES iteration for the two cases showing that the rates slow
down very slowly - poly-logarithmically.

4 Numerical results

In this section, we present some preliminary numerical results for the pro-
posed method. All experiments are done for the symmetric preconditioner,
that is for T sym, but we expect a similar performance for Tnsym. In all casesΩ
is a unit square domain. The coefficientA is equal to 2+sin(100πx) sin(100πy),
except for areas (subdomains) marked with red where A equals α1(2 +
sin(100πx) sin(100πy)) with α1 being a parameter (cf. Figure 3 and Table 1).
The right hand side is chosen as f = 1. The numerical solution is found by
using the generalized minimal residual method (GMRES).
For the paper, we consider two test problems as shown in Figure 3. We run

the method until the l2 norm of the residual is reduced by a factor of 106,
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(a) Problem 1. (b) Problem 2.

Fig. 3: Test problems 1 and 2. Regions (subdomains) marked with red are
where A depends on α1. Fine mesh consists of 48 × 48 rectangular blocks,
while coarse mesh consists of 4× 4 rectangular subdomains
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(a) Problem 1.
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(b) Problem 2.

Fig. 4: Relative residual norms for GMRES minimizing the A-norm for dif-
ferent values of α1.

that is when ‖ri‖2/‖r0‖2 ≤ 10−6. Number of iterations, for the problems
under consideration, for different values of α1, are shown in Table 1. The

α1 1e0 1e1 1e2 1e3 1e4 1e5 1e6

Problem 1. 18 26 26 27 27 27 28

Problem 2. 18 21 22 22 22 23 24

Table 1: Number of GMRES iterations until convergence for the solution of
(5), with different values of α1 describing the coefficient A in the red regions,
cf. figures 3a and 3b.

results show that the methods are robust for the present distribution of the
coefficients, and supports our theory.
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