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1 Background
It has been widely recognized that one of the major challenges in the simu-
lation of flow and transport problems is finding the numerical solution of the
pressure equation [3]. Typically we seek to find the pressure solution, p, such
that 




−∇ · (k∇p) = f in Ω

p = pD on ΓD

−k∇p · n = gN on ΓN,

(1)

where k represents the positive elliptic coefficient, and f represents a forcing
function. The associated Dirichlet, and Neumann boundary conditions are
given by pD and gN respectively. The corresponding variational formulation
is to find p, with (p− pD) ∈ V , that satisfies

a(p, v) = `(v) ∀v ∈ V, (2)

where V = {v ∈ H1(Ω) : v = 0 on ΓD}, and

a(p, v) =

∫

Ω

k∇p · ∇v dx, and `(v) =

∫

Ω

fv dx−
∫

ΓN

gNv dl. (3)

Assuming sufficient regularity of the data, the Lax-Milgram Theorem guar-
antees a unique solution of (3). The chief difficulty in approximating p stems
from the heterogeneity of k, which can occur in multiple scales. This het-
erogeneity directly dictates the degree of the mesh resolution on which the
approximate solution is found. In turn this results in a very high dimensional
algebraic system which must be solved.
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With the advances of parallel computing, domain decomposition as a gen-
eral framework has gained a stronger role in efficiently finding accurate solu-
tions to problems of this type. In this paper, we propose an iterative procedure
for solving (3) that relies on a one-time preprocessing step where a set of in-
dependent subdomain problems are computed. This preprocessing step yields
a set of so called multiscale basis functions with which the global solution
is represented. Continuity of the solution at the interface is established by
imposing Robin Transmission conditions on each subdomain interface. This
imposition is accomplished in an iterative manner. In the following section
we describe an iterative domain decomposition technique that serves as the
backbone for our proposed procedure.

2 A Domain Decomposition with Robin Transmission
Conditions

We decompose the domain Ω into a set of non-overlapping subdomains
{Ωj}Nsd

j=1, and construct a local problem on each subdomain. For ease of no-
tation we define Nm to be the set of indices for subdomains that share an
edge with Ωm. For example, Nm = {l, r, b, t} is associated with the subdo-
main presented in Figure 1. Each local problem is supplied with a boundary
condition that allows for the continuity of the solution and its flux at each
subdomain interface to be maintained. In particular, for each n ∈ Nm, we
impose

−k∇pm · em − γmnpm = gmn on Γmn, (4)

where γmn is a positive constant, em represents the exterior unit normal
respective to subdomain Ωm, Γmn = ∂Ωm ∩ ∂Ωn, and the value of gmn
comes from the neighbouring subdomain Ωn, expressed as

gmn = k∇pn · en − γnmpn on Γmn. (5)

To establish the iterative procedure, it is assumed that gmn is known, namely,
from the previous iteration level. The resulting local variational formulation
is to find pm ∈ H1(Ωm) such that

am(pm, w) +
∑

n∈Nm

bmn(pm, w) = `m(w) +
∑

n∈Nm

rmn(w) ∀w ∈ H1(Ωm), (6)

where

am(v, w) =

∫

Ωm

k∇v · ∇w dx, bmn(v, w) =

∫

Γmn

γmnvw dl,

`m(w) =

∫

Ωm

fw dx, rmn(w) = −
∫

Γmn

gmnw dl.

(7)

We use (6) to develop an iterative technique for approximating (2) whose
algorithm is presented in Algorithm 1. At the practical level, this iteration
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does converge to the true solution [2, 4, 5], but it requires that we calculate
a new local solution on every subdomain for each step of the iteration. De-
pending on the initial guess, and the number of subdomains, this can greatly
exceed the computational time required to solve the problem with traditional
methods.

Ωm ΩrΩl

Ωb

Ωt

Γml = ∂Ωm ∩ ∂Ωl

Γmr = ∂Ωm ∩ ∂Ωr

Γmb = ∂Ωm ∩ ∂Ωb

Γmt = ∂Ωm ∩ ∂Ωt

Fig. 1 An internal rectangular subdomain Ωm, and its neighbouring subdomains {Ωn}

Algorithm 1

Set initial guess for {p(0)m }Nsd
m=0

for it = 1 until convergence do

Construct g
(it−1)
mn , for all n ∈ Nm, m = 1, . . . , Nsd

Solve (6) to get p
(it)
m for m = 1, . . . , Nsd

end for

3 Incorporation of Multiscale Basis Functions
To alleviate the aforementioned burden of calculation, our strategy is to form
a preprocessing step aimed at collecting the finescale heterogeneity informa-
tion on each subdomain. This information is stored in the so called subdomain
multiscale basis functions. Here our motivation is to find an approximate so-
lution to (6) that is expressed as a linear combination of these multiscale
basis functions.

For each n ∈ Nm we decompose Γmn into a union of nonoverlapping seg-
ments {Iimn}kmn

i=1 , and denote by {zimn}kmn
i=0 the associated vertices. For sim-

plicity we assume uniformity of these segments as they relate to neighbouring
subdomains.

Ωm

z0mt z1mt z2mt z
3
mt

φ0
mt

Ωm

z0mt z1mt z2mt z
3
mt

φ1
mt

Ωm

z0mt z1mt z2mt z
3
mt

φ2
mt

Ωm

z0mt z1mt z2mt z
3
mt

φ3
mt

Fig. 2 Example of ”hat” functions associated with an edge Γmt. On edges Γmb, Γmr, Γml

the value of these functions is zero.
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We set

g̃mn =

kmn∑

i=0

gmn(zimn)φimn, (8)

where {φimn}kmn
i=0 is the usual ”hat” nodal basis function corresponding to

{zimn}kmn
i=0 expressed in a parametric form associated with Γmn. Examples of

these ”hat” functions are presented in Figure 2. For our approximate solution
we construct a new variational formulation. Find p̃m ∈ H1(Ωm), satisfying

am(p̃m, w) +
∑

n∈Nm

bmn(p̃m, w) = `m(w) +
∑

n∈Nm

r̃mn(w) ∀w ∈ H1(Ωm), (9)

where

r̃mn(w) = −
kmn∑

i=0

gmn(zimn)

∫

Γmn

φimnw dl. (10)

With this formulation, the same iteration as in Algorithm 1 could have been
done. It is worth noting that there are two sources of error that are com-
mitted when conducting the iteration based on (9). The first error is shared
by the iteration using (6), namely resulting from the fact that in practice
only a finite number of iterations are used. The second error stems from the
replacement of gmn by g̃mn, i.e., an approximation error. There is a nonlinear
interaction between these two error components. We expect, however, that at
the asymptotic level of systematic refinement (kmn →∞ and convergence is

reached), p̃ =
∑Nsd

m=1 p̃m1Ωm
should converge to p. What is more important

is that the formulation (9) provides a building block for the construction of
subdomain multiscale basis functions as part of the preprocessing step. The
approximate solution on each subdomain is then represented using these basis
functions.

To each Γmn we associate a set of multiscale basis functions {ψimn}kmn
i=0 ,

where ψimn ∈ H1(Ωm) is the solution to the variational formulation

am(ψimn, w) +
∑

n∈Nm

bmn(ψimn, w) = rimn(w) ∀w ∈ H1(Ωm). (11)

The linear functional in (11) is given by

rimn(w) = −
∫

Γmn

φimnw dl. (12)

When f 6= 0, we compute an extra multiscale basis function ψ̂m ∈ H1(Ωm)
that satisfies

am(ψ̂m, w) +
∑

n∈Nm

bmn(ψ̂m, w) = `m(w) ∀w ∈ H1(Ωm). (13)
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On each subdomain we set Vm = span
{
ψimn, i = 1, · · · , kmn, n ∈ Nm, ψ̂m

}

and seek p̃m ∈ Vm, i.e.,

p̃m = ψ̂m +
∑

n∈Nm

kmn∑

i=0

αimnψ
i
mn ≈ pm. (14)

An approximation of the global solution is now recaptured by determining the
values of each αmn = [α0

mn, . . . , α
kmn
mn ] that induce the continuity condition

outlined in (4), and imposed in (6). Thus, for each φj associated with an
interface edge Γmn we require

kmn∑

j=0

αjmn

∫

Γmn

φjmnφ
i
mn dl =

∫

Γmn

g̃mnφ
i
mn dl, ∀ i = 0, · · · , kmn + 1. (15)

Here we note that this continuity condition yields a linear system governing
αmn. The associated matrix is tridiagonal and of dimension kmn + 1. At a
practical level the calculation of g̃mn can be performed using p̃n, the multi-
scale representation of pn. The iterative procedure presented in Algorithm 1,
is now modified to be an iteration governing each αmn. The modified iteration
is presented in Algorithm 2.

Algorithm 2

Calculate {ψi
mn}

kmn
i=1 , for all n ∈ Nm, m = 1, . . . , Nsd

Set initial guess α
(0)
mn, for all n ∈ Nm, m = 1, . . . , Nsd

for it = 1 until convergence do

Calculate g̃
(it−1)
mn , for all n ∈ Nm, m = 1, . . . , Nsd

Solve for α
(it)
mn, satisfying (15) for all n ∈ Nm, m = 1, . . . , Nsd

Set p̃
(it)
m , m = 1, . . . , Nsd

end for

4 Numerical Examples
In this section we present two studies. First, we present a convergence study
of our method when applied to a problem with a known solution. We then
apply our method to a single phase flow model, and compare the results with
traditional methods. To calculate the multiscale basis functions, we use the
traditional continuous Galerkin FEM to solve (11) and (13).

4.1 Convergence Study
We first explore the behaviour of the approximate solution in terms of the
discretization parameters. In particular, it is interesting to study the inter-
action between the subdomain and the segment configuration. The former
determines how many local problems are created while the latter determines
the number of multiscale basis functions to represent a particular local prob-
lem. The subdomain size is denoted by H and the segment size is denoted by
h̃. The interplay between the two parameters reflects a choice of balancing
the accuracy and efficiency of the approximate solution.
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For this purpose, we choose a problem with a known solution. The problem
is posed in (0, 1)2 with a zero Neumann condition on x2 = 0, 1 and a Dirichlet
condition on x1 = 0, 1. We assume that f = 0 and k(x) = a1(x1)a2(x2),
where a1 and a2 are

a1(x1) = [0.25− 0.999(x1 − x12) sin(11.2πx1)]−1

a2(x2) = [0.25− 0.999(x2 − x22) cos(5.2πx2)]−1,

yielding kmax/kmin ≈ 2× 104. Comparison of the effect that various segment
and subdomain configurations have on the accuracy of the resulting approxi-
mate solution are presented in Table 1. In this example, the finescale solution
is found on a grid of 256× 256 rectangles (i.e., h = 1/256) and this finescale

mesh is the base for the configuration of h̃ after H is determined.

L2 H1

h̃ H = 0.250 H = 0.125 H = 0.250 H = 0.125

h 0.000217 0.000217 0.02070 0.02070

2h 0.000217 0.000218 0.02074 0.02079

4h 0.000223 0.000241 0.02137 0.02201

8h 0.000252 0.000485 0.03068 0.03559

16h 0.001159 0.002538 0.08002 0.10412

Table 1 Comparison of the L2-norm, H1-norm of the approximate solution found using

various segment lengths, and subdomain sizes

We note that when h̃ = h the resulting solution has exactly the same error
estimates as solutions found with the traditional Galerkin FEM on the fine
mesh. For a fixed H, the errors of the proposed method stay relatively un-
changed as h̃ is increased. This can be taken as a potential advantage of the
proposed method; lower dimensional Vm can still produce a relatively accu-
rate numerical solution. This of course reduces the number of multiscale basis
functions which must be calculated. Furthermore, results in Table 1 indicate
that the errors seem to be less sensitive to H. Traditionally, it has been estab-
lished (see for example [4, 5]) that an increase in subdomain interfaces (i.e.,
the finer H is) can potentially increase the number of iterations needed for
convergence to a desired tolerance. Thus, this indication suggests that only
fewer subdomains (i.e., less interfaces) are required to extract accurate solu-
tions, which results in fewer iterations for convergence. On the other hand,
this can potentially mean that the multiscale basis functions are governed
by a higher dimensional problem, which correlates to a higher computational
load in the preprocessing step. In the end, a problem dependent choice of H
and h̃ leads to an optimized scenario of calculation.

4.2 Applications to Single Phase Flow
The mathematical model is

∂tS + u · ∇λ(S) = 0, with specified I.C. + B.C. and u = −k(x)∇p,
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where S represents the saturation and ∇ ·u = 0, i.e., elliptic PDE governing
the pressure p. The boundary condition for p is the same as the one in the
previous subsection. The model is a typical one way coupling equation where
the pressure is first solved and the velocity u is constructed from it, which
in turn is used as an input in solving the transport equation. We applied the
postprocessing technique [1] to recover a locally conservative flux u · n on
the finescale grid. Then a first order up-winding scheme is used to determine
the time evolved saturation value. The elliptic coefficient that is used for this
model is shown in Figure 3. This elliptic coefficient is posed on 240 × 240
grid and has a ratio kmax/kmin ≈ 6.4 × 104. In Figure 4 we show a visual

0.0

0.5

1.0

0.0 0.5 1.0

-3.0

1.0

5.0

9.0

13.0

17.0

21.0

Fig. 3 A logarithmic plot of k(x) used in single phase flow simulation

comparison of the saturation solution at various time steps, for our method
and traditional methods. In Figure 5 a plot of the relative difference between
the solution found with the proposed method and the solution found with
traditional methods is presented.

h̃ = 12h h̃ = 6h Reference

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 4 Comparison of saturation at t = 0.003 (top), t = 0.009 (bottom), all results use

H = 0.25.

5 Conclusion
We have proposed an iterative multiscale domain decomposition method with
certain favourable properties. By incorporating the multiscale basis functions
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% h̃ = 2h
h̃ = 3h
h̃ = 6h
h̃ = 12h

Fig. 5 Comparison of the L2-error of the saturation difference between our method and
traditional Galerkin FEM, for various choices of h̃. In all cases, H = 0.25.

into an iterative domain decomposition procedure we have reduced its com-
putational demand. The numerical examples suggest that our method is ca-
pable of recapturing accurate solutions that are comparable to those found
with traditional methods. In the future we will extend the capability of the
method to multiphase flow models. We are also interested in conducting a
rigorous convergence analysis of the proposed method.
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