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Abstract In this paper we present an algebraic multigrid for discontinu-
ous Galerkin methods. Coarser grid levels are created by applying a semi-
coarsening approach based on an edge-coloring of the matrix-graph. The
grid-transfer uses local basis transformations between the polynomial bases
of neighboring elements. Along the coarsening process, the implicit block
structure of the linear system is preserved. High frequency errors are reduced
by applying an overlapping block smoother. The overlapping patches are
constructed and locally weighted depending on the problem type. As model
problems serve the Poisson and Stokes equations. The multigrid method is
implemented in C++ using the DUNE framework.
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1 Introduction

Discontinuous Galerkin methods are popular discretization methods for par-
tial differential equations for over a decade. For the resulting linear system,
the need arises for robust and efficient solvers. A geometric multigrid al-
gorithm which maintains the properties of the discretization along the grid
hierarchy has been presented in Johannsen [2005]. The grid transfer is based
on an L2-projection and an overlapping element block smoother is applied
on each level. For cases where the construction of a geometric grid hierar-
chy is not feasible, certain classes of algebraic multigrid methods have been
developed. In Ayuso de Dios and Zikatanov [2009], an iterative method has
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been proposed, based on the splitting of the function space into two non-
overlapping subspaces. On those spaces, the problem can be solved more
efficiently. Another approach has been followed in Prill et al. [2009]. There,
an algebraic multigrid method has been presented which uses a smoothed
aggregation method to form the coarser grid levels. A combination of both
approaches has been developed in Bastian et al. [2012]. The algebraic multi-
grid being described there uses a projection of the discontinuous space onto
the conforming subspace of linear elements. An agglomeration strategy is
employed to create the smoother and the coarse grid levels. This strategy
drops the block structure of the linear system and loses the information of
the discontinuous Galerkin discretization on coarser grid levels. In addition,
it is not applicable to the Stokes equation since the inf-sup stability is lost
on the first order conforming subspace due to the equal order discretization
of velocity and pressure.

The aim of this paper is to develop and evaluate an algebraic multigrid
method for discontinuous Galerkin discretizations, which preserves and uses
the block structure on each grid level and can be applied to different prob-
lems, including the Stokes equation. We follow the general structure of the
geometric multigrid of Johannsen [2005] but also take ideas from Bastian
et al. [2012] into account. The derivation of the method uses the Poisson
equation and includes comments on the differences for the Stokes equation
when applicable. The paper is structured as follows: Sect. 2 provides a short
introduction to the discretization of the Poisson equation and the resulting
linear system. In Sect. 3 the algebraic multigrid algorithm is presented, in-
cluding the transfer between different grid levels and the smoothing operator.
The algorithm is evaluated in Sect. 4 and finally a short conclusion is given.

2 Preliminaries

We describe our method using the discontinuous Galerkin discretization for
the Poisson equation, cf. Arnold et al. [2001/02]. Let Th(Ω) := {Ω0, . . . , ΩN−1}
define a triangulation of the domain Ω with the size parameter h ∈ R. The
broken Sobolev space is defined as Vh := {u ∈ L2(Ω)|u|Ωi

∈ P (Ωi)} for
some polynomial spaces P (Ωi). The discontinuous Galerkin formulation of
the Poisson equation with homogeneous Dirichlet boundary conditions reads:
find uh ∈ Vh such that aε(uh, v) = f(v) holds for all v ∈ Vh (cf. Arnold et al.
[2001/02] for a derivation and definition of aε). The method parameter is de-
noted by ε and the penalty parameter by η ∈ R. For each grid element Ωi, we
assume there is a diffeomorphism µi : Rn → Rn with µi(Ω̂) = Ωi, mapping
local coordinates on a reference element Ω̂ to global coordinates on Ω. Next
we introduce local polynomial basis functions on the reference element:

φi : Rn → R, i ∈ {0, . . . , Nb − 1} (1)
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In order to simplify the description, we assume the same local basis on all
elements. Note that this restriction is not essential. Using the local to global
transformations, we define the basis function in global coordinates as φi,k =
φi ◦ µ−1k . Introducing a representation of uh and v with respect to the global
basis functions in the discontinuous Galerkin formulation yields the linear
system for the Poisson equation:

Ax = b, A = (Akl)k,l
Akl = (aklij )ij ∈ RNb×Nb , aklij = aε(φj,l, φi,k)

(2)

Besides for the Poisson equation, we also construct the multigrid method for
the Stokes equation. We will not present its discontinuous Galerkin formu-
lation here, but refer to Rivière and Girault [2006]. We block the degrees of
freedom for pressure and velocity element wise, which again yields a sparse
block linear system.

3 Algorithm

General

The proposed algebraic multigrid method is a method to solve a linear sparse
block system Ax = b resulting from a discontinuous Galerkin discretization
using only geometric information on the finest grid level. The grid levels are
numbered from coarse to fine with 0, . . . , L, such that 0 denotes the coarsest
grid level. By Nl ∈ N we denote the number of elements on level l. We will
mark matrices and vectors with the level they are associated with. If the
level index is missing, the matrix or vector refers to the finest level, if not
stated otherwise. On each grid level but L, we assume there is a prolongation
operator P l mapping a coefficient vector from grid level l to the next finer level
l+ 1. The restriction Rl of a vector from level l+ 1 to level l is accomplished
using the transposed of the prolongation Rl := (P l)t. We compute the coarse
grid matrices recursively from the finest matrix by applying the Galerkin
product Al−1 = Rl−1AlP l−1. To reduce oscillating error frequencies, we apply
the smoother Sl on level l. Both, the prolongation and the smoother are
described in the remainder of this section.

Grid transfer

The spaces on coarse levels are constructed recursively as subspaces of the
space at the next finer level using a semi coarsening approach. A semi coars-
ening can be constructed based on a matching in the block matrix graph of
the block matrix A. The graph G(A) = (V (A), E(A)) consists of the nodes
and the edges:
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V (A) = {0, . . . , NL − 1}
E(A) = {(i, j) ∈ V (A)× V (A) : i < j ∧Aij 6= 0}

(3)

Since the sparsity pattern of A is symmetric, G(A) is undirected. In the
following, when selecting edges for coarsening, we only consider strong edges
Es(A) ⊂ E(A). We divide the edges into weak and strong ones, using the
same criterion as in Bastian et al. [2012]. The strength of an edge (i, j) ∈ E
is defined as

ρ((i, j)) :=
‖Aij‖‖Aji‖
‖Aii‖‖Ajj‖

(4)

An edge is called strong if its strength is greater than β times the maxi-
mum strength among its neighbors, for a constant β ∈ [0, 1]. The selection
of disjoint strong edges corresponds to finding a graph matching. A graph
matching of strong edges is a subset of Es(A) such that every node is part of
at most one edge.

The transfer between two grid levels is constructed using so called shift
matrices, consisting of local basis transformations. For a pair of elements, we
select the polynomial basis of the first element to be the basis of the combined
element and embed the basis of the second element into the one of the first.
The shift from l to k for two neighboring elements l and k is defined as

Skl := M−1k S̃kl
Mk := (mk

ij)ij mk
ij := 〈φi,k, φj,k〉L2(Ωk)

S̃kl := (s̃klij )ij s̃klij := 〈φi,k, φj,l〉L2(Ωk)

(5)

These local shift matrices can be combined into a global sparse block matrix.
Due to the coupling of neighboring elements in the discontinuous Galerkin
discretization, the global shift matrix has the same sparsity pattern as the
matrix A. The shift matrices on coarser grid levels can be obtained from the
next finer level by successive shifting into neighboring elements.

Having selected a set of pairs to be coarsened, we can construct the pro-
longation matrix which transfers a block coefficient vector from the coarse
to the fine level. For an element which has not been selected for coarsening,
we keep its basis on the coarse grid and therefore set the associated prolon-
gation block to the identity matrix. For each pair, we keep the basis of the
first element and again set the block to the identity matrix. The basis of the
other element gets transfered into the basis of the first using the local shift
matrices described above. This approach yields the prolongation as a sparse
block matrix P l which can be defined as

P l(. . . , xe, . . . ) := (. . . , [xe, Sfexe], . . . ) (6)

for each selected pair (e, f). We define the corresponding restriction matrix
as Rl := (P l)T . The domain Ωli associated with an element i on level l is
defined as the union of all elements on the finest grid level which have been
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Fig. 1 Overlapping patches for the Poisson equation (left) and Stokes equation (right)

aggregated in element i. Accordingly, the function space V l on level l is
spanned by the bases of the elements of level l.

Smoother

The smoother Sl should reduce oscillating components of the error on the
current level. As presented in Johannsen [2005], we use an additive and mul-
tiplicative Schwarz method as a smoother. Let V li ⊂ V l define a subspace of
V l for each i ∈ I l with an index set I l to be defined later. For each subspace
V li , i ∈ I l, we solve al(ulk+clk,i, v) = f(v) ∀v ∈ V li for clk,i ∈ V li . The additive
Schwarz method is then given by

ulk+1 = ulk + θl
∑
i∈Il

clk,i (7)

with a damping parameter θl ∈ R. In a similar way, the multiplicative Schwarz
method can be introduced, where the updates are computed and applied
successively.

In Johannsen [2005] different types of patches have been evaluated in a
geometric multigrid setting. The results indicate that non-overlapping el-
ement block patches do not yield a robust smoother. Overlapping vertex
based patches, depicted in Fig. 1, show robust smoothing behavior and are
therefore used by the smoother in our method. It should be pointed out, that
the geometric information about vertices and their connection to elements is
only available at the finest level. We need to adopt this information along the
coarsening process. This is done, by keeping only those vertices from level
l + 1, which have not become internal vertices between two elements. The
connectivity information between the remaining vertices and their adjoining
elements on the coarse level can be transfered from the fine level: a vertex on
level l is connected to an element i on level l if it was connected to an element
on level l+1 which has been aggregated into i. The smoother is said to fulfill
the smoothing property, if ‖Al(Sl)ν‖ ≤ Cη(ν) with a function η(ν) → 0 for
ν →∞.

For the Poisson equation, we set I l to be the index set of grid vertices
on level l in the algebraic sense. V li is the linear subspace spanned by the
degrees of freedom associated with an element which is connected to the
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grid vertex i. The numerical results in Johannsen [2005] indicate for the one
dimensional problem using the NIPG method, that the additive smoother
fulfills the smoothing property with 1/ν.

For the Stokes equation, in addition to the vertex based patches, we need
to take into account the saddle point structure of the problem. We adopt the
idea of the Vanka type smoother from Vanka [1986], where, in a staggered grid
context, a pressure degree of freedom is combined with all coupling velocity
degrees of freedom. In addition we include the vertex based approach in order
to construct a robust smoother. Combining both approaches in the context
of the discontinuous Galerkin formulations, we set I l to be the index set
of elements on level l. V li is the linear subspace spanned by the degrees of
freedom associated with an element which shares a grid vertex with element
i (see Fig. 1). Based on experimental results, we apply a different damping
factor depending on the position of an element inside the patch. Theoretic
results from Schöberl and Zulehner [2003] and numerical experiments indicate
that for Stokes SIPG, the additive smoother fulfills the smoothing property
with at least 1/

√
ν.

4 Evaluation

We implemented the algebraic multigrid method using the Distributed and
Unified Numerics Environment (DUNE) (see Bastian et al. [2008]), using the
PDELab toolbox (see Bastian et al. [2010]) for the PDE discretization. First,
we apply our method to a two dimensional Poisson problem with Ω = [0, 1]2

on a structured grid with rectangular elements, in order to reproduce the
results given in Johannsen [2005] for a geometric multigrid method. As local
basis functions we use an orthogonalized Qk basis, with Qk := {(x, y) 7→
xαxyαy : αx, αy ∈ N, αx, αy ≤ k}. For the following tests, we set k := 2. We
use a NIPG discretization with different penalties and different sizes of the
finest grid level. The penalty ranges from 10−3 to 106 and the fine grid size is
increased by successive uniform refinement starting with a size of 5× 5. The
convergence rate is measured as

ρ :=

(
‖d20‖2
‖d10‖2

) 1
10

, (8)

where di denotes the defect in iteration i. We apply the additive method with
damping θ = 1

2 and ν = 4 pre- and post smoothing steps. The multiplicative
method is applied with θ = 1 and ν = 1. The results can be seen in the
second column of Fig. 2. In this Fig. and in the following, graphs with higher
convergence rates correspond to finer grid sizes. It can be observed, that the
general convergence behavior of the geometric method can be reproduced,
while producing better convergence rates for higher penalties.
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In the next test, we apply our method to the SIPG discretization of the
Poisson equation. The test parameters are the same as in the previous test.
The convergence results can be seen in the third column of Fig. 2. We observe
similar convergence behavior as in the NIPG case. The method does not
converge for a penalty less than σ0 < 10, which corresponds to the theoretic
findings in Arnold et al. [2001/02].

Next, we use the method as a preconditioner in a BiCGSTAB solver for
a second order NIPG discretization on different unstructured grids. For dif-
ferent values of h, we create triangulations of the unit sphere and unit cube
using tetrahedral elements. We use the multiplicative smoother and stop the
iteration at a relative defect reduction of 10−10. The results can be seen in
Table 1.

Finally, we test for NIPG and SIPG discretizations of the Stokes equation
on the unit square. We choose the orthogonalized Qk basis for the velocity
components and an orthogonalized Pk−1 basis for the pressure, where Pk−1 :=
{(x, y) 7→ xαxyαy : αx, αy ∈ N, αx + αy ≤ k − 1}. Again we use a structured
grid with rectangular elements, choose k = 2 and apply the method with

Fig. 2 convergence rates for the Poisson equation, left: NIPG method using the geometric

multigrid from Johannsen [2005], center: NIPG method using our multigrid, right: SIPG
method using our multigrid, top: additive smoother, bottom: multiplicative smoother

unit sphere unit cube

elements 2104 8270 33418 139572 547038 2406 9386 38202 154194 635216

levels 11 11 10 10 10 11 12 13 12 11
iterations 3 3 3 3 4 3 3 3 3 3

Table 1 results for the Poisson equation using the NIPG method on unstructured tetra-

hedral grids with the multigrid as a preconditioner for the BiCGSTAB algorithm
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Fig. 3 convergence rates for the Stokes equation, left: NIPG method, right: SIPG method,
top: additive smoother, bottom: multiplicative smoother

different penalties and grid sizes. We use the same damping parameters as
before, but weight the velocity degrees of freedom differently depending on
their local patch position when applying an update. The weight for the central
element of a patch is set to 1

2 and the weight for the outer elements is set to
1

2m , where m denotes the number of outer elements in the patch. Our method
is used as a preconditioner for the BiCGSTAB algorithm. The results can be
seen in Fig. 3. We observe increased convergence rates when compared to the
Poisson equation. In addition, we observe larger convergence rates for finer
grids and larger penalties.

5 Conclusion

We proposed an algebraic multigrid method for the discontinuous Galerkin
discretization of the Poisson and Stokes problem. It shows good convergence
rates and is flexible enough to be applied to different types of problems, which
are not covered in this paper. Currently, one drawback of the method is its
large computational cost. This effort is dominated by the application of the
overlapping block smoother on the finest grid level. Reducing this effort by
applying different smoothing strategies has not yielded the desired conver-
gence behavior so far. To avoid increasing convergence rates for finer grids
and higher penalties, one can develop different local shift strategies. Instead
of projecting into the local basis of a single element, one can investigate the
possibility to project into a common basis on all aggregated elements. In or-
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der to get a better understanding of the smoother, an investigation of the
smoothing property might be worthwhile.
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