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Abstract To leverage the computational capability of modern supercom-
puters, existing algorithms need to be reformulated in a manner that allows
for many concurrent operations. In this paper, we outline a framework that
reformulates classical Schwarz waveform relaxation so that successive wave-
form iterates can be computed in a parallel pipeline fashion after an initial
start-up cost. The communication costs for various implementations are dis-
cussed, and numerical scaling results are presented.
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1 Introduction

Schwarz Waveform Relaxation (SWR) introduced in Bjørhus [1995] has
been analyzed for a wide range of time-dependent problems, including
the parabolic heat equation (Gander and Stuart [1998]), wave equation
and advection-diffusion equations (Gander et al. [1999], Giladi and Keller
[2002]), Maxwell’s equations (Courvoisier and Gander [2013]), and the porous
medium equation (Japhet and Omnes [2013]). In contrast to classical Schwarz
iterations, where the time-dependent PDE is discretized in time and domain-
decomposition is applied to the sequence of steady-state problems, SWR
solves time-dependent sub-problems; this relaxes synchronization of the sub-
problems and provides a means to couple disparate solvers applied to in-
dividual sub-problems, as shown in Lemarié et al. for example. SWR has
also been shown in Giladi and Keller [2002] and Bennequin et al. [2009] to
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have superlinear convergence for small time windows. This paper outlines a
framework that reformulates SWR so that successive waveform iterates can
be computed in a pipeline fashion, allowing for increased concurrency and
hence, increased scalability for SWR-type algorithms. In §2, we review the
SWR algorithm before introducing and comparing several Pipeline Schwarz
Waveform Relaxation algorithms (PSWR) in §3. Numerical scaling results
for the linear heat equation are presented in §4.

2 Schwarz Waveform Relaxation

Denote the PDE of interest as

ut = L(t, u), (x, t) ∈ Ω × [0, T ] (1)

u(x, 0) = f(x), x ∈ Ω
u(z, t) = g(z, t), z ∈ ∂Ω.

Consider a partitioning of the domain, Ω = ∪iΩi. The domains in the par-
tition may be overlapping or non-overlapping. Let ui denote the solution on
sub-domain Ωi. Then, equation (1) can be decomposed into a coupled system
of equations,

(ui)t = L(t, ui), (x, t) ∈ Ωi × [0, T ] (2)

ui(x, 0) = f(x), x ∈ Ωi

ui(z, t) = g(z, t), z ∈ ∂Ωi ∩ ∂Ω,
Tij(ui(z, t)) = Tij(uj(z, t)), z ∈ ∂Ωi ∩ ∂Ωj .

where T are transmission operators appropriate to the equation (1). SWR

decouples the system of PDEs in equation (2). Let u
[k]
i denote the k-th wave-

form iterate on sub-domain Ωi. After specifying an initial estimate for the

sub-domain solution on the interfaces, u
[0]
i (z, t), z ∈ ∂Ωi \ ∂Ω, the SWR al-

gorithm iteratively solves PDEs (3) for waveform iterates k = 1, 2, . . . until
convergence,

(u
[k]
i )t = L(t, u

[k]
i ), (x, t) ∈ Ωi × [0, T ] (3)

u
[k]
i (x, 0) = f(x), x ∈ Ωi

u
[k]
i (z, t) = g(z, t), z ∈ ∂Ωi ∩ ∂Ω,

Tij(u[k]i (z, t)) = Tij(u[k−1]
j (z, t)), z ∈ ∂Ωi ∩ ∂Ωj .

A pseudo-code for the algorithm is presented on the next page. Observe that
SWR allows for each sub-domain to independently compute time-dependent
solutions on their respective sub-domains (lines 9-11) During each waveform
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Schwarz Waveform Relaxation Algorithm

1. MPI Initialization

2. parallel for i = 1 . . . N (Sub-domain)

3. for t = ∆t . . . T

4. Guess u
[0]
i (z, t), z ∈ ∂Ωi ∩ ∂Ωj

5. end

6. end

7. for k = 1 . . .K (Waveform iteration)
8. parallel for i = 1 . . . N (Sub-domain)

9. for t = ∆t . . . T

10. Solve for u
[k]
i (t, x)

11. end

12. for t = ∆t . . . T

13. Exchange transmission data T (u[k]i (t, z))
14. end

15. Check convergence

16. end

17. end

.

iteration, transmission data on each sub-domain is aggregated for the en-
tire computational time interval before boundary data is exchanged between
neighboring sub-domains (lines 12-14).

3 Pipeline Schwarz Waveform Relaxation

Using a similar approach described in Christlieb et al. [2010] and Vandewalle
and Van de Velde [1994], the relaxation framework can be rewritten so that
after initial start-up costs, multiple waveform iterations can be computed in
a pipeline-parallel fashion. A graphical example of the PSWR algorithm for
two subdomains is shown in Figure 1. To simplify the presentation, we present

Iteration 1

Iteration 2

Iteration 3

Iteration 1

Iteration 2

Iteration 3

Wall clock time

Fig. 1 The proposed PSWR algorithm allows for multiple Schwarz waveform iterations to
be simultaneously computed. After an initial start-up cost, multiple iterates are computed

in a pipeline fashion.
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the algorithm for the simplified case where the same time discretization is
used for all sub-problems (PSWR Algorithm 1).

Pipeline Schwarz Waveform Relaxation Algorithm 1

1. MPI Initialization

2. parallel for i = 1 . . . N (Sub-domain)

3. for t = ∆t . . . T
4. Guess u

[0]
i (z, t), z ∈ ∂Ωi ∩ ∂Ωj

5. end

6. Set t[0] = T
7. end

8. parallel for k = 1 . . .K (Waveform iteration)

9. parallel for i = 1 . . . N (Sub-domain)
10. set t[k] = ∆t

11. While t[k] ≤ T
12. If t[k] < t[k−1]

13. Solve for u
[k]
i (t[k], x)

14. Exchange transmission data T (u[k]i (t[k], z))
15. t[k] ← t[k] +∆t

16. end

17. end

18. Check convergence

19. end

20. end
.

Several observations should be made about the proposed PSWR algorithm.
First, a Schwarz iteration can only proceed if boundary data (i.e. transmission
conditions) from the previous iterate are available; this condition (part of the
start-up cost before the PSWR algorithm can be run in a pipeline fashion)
is checked by the if statement in line 12. Secondly, transmission data is
exchanged after every time step to facilitate the pipeline parallellism. This
added synchronization can be relaxed at the expense of increasing the start-
up cost needed to run this algorithm in a pipeline fashion. This pipeline
parallelism allows for N · K concurrent processes in the PSWR algorithm
with efficiency Nt

K+Nt
(accounting for start-up costs), where Nt is the number

of time steps used to discretize the time domain [0, T ], N is the number of
sub-domains, K is the number of waveform iterates. This contrasts with the
SWR algorithm, which can only utilize N concurrent processes corresponding
to the N sub-domains. This increased concurrency in PSWR comes with the
overhead of an increased number of messages and synchronization.

For the SWR algorithm, one needs to send O(K − 1) message of size
O(Nt). If N ·K processors are used in a pipeline parallel fashion as described
in Pipeline Schwarz Waveform Relaxation Algorithm 1, O((K− 1) ·Nt) mes-
sages of size O(1) are needed. More generally, if N ·p processors are used in the
PSWR algorithm, where p < K is a multiple of K, then O((p− 1)/p ·K ·Nt)
messages of size O(1), and O(K/p − 1) messages of size O(Nt), are needed.
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We note that the PSWR algorithm can also be implemented using a frame-
work the naturally reduces the number of messages in a system. Assuming
a heterogeneous computing platform (where each socket has multiple cores),
one can use the MPI-3 framework (Tipparaju et al. [2009]) or the OpenMP
protocol in the outer “parallel for” statement in line 8, to aggregate trans-
mission data from line 14 naturally before exchanging transmission data with
neighboring nodes. Alternatively, because nodes working on waveform iterate
k only need to communicate with waveform iterates k − 1, the PSWR algo-
rithm allows for a natural grouping of nodes so that one can (in principle)
use multiple overlapping communicators to leverage data/network-topology
and software defined networking advances (see Feamster et al. [2004]) to add
scalability.

Generalizations to allow for disparate time discretizations in each sub-
problem are possible. We list the algorithm without implementation. Unlike
PSWR Algorithm 1, it is not possible to keep the “pipe” full, i.e. domain
i might necessarily need to wait for it’s neighbouring domains to provide

boundary data. Additionally, solving for u
[k]
i (t

[k]
i , x) in line 14 requires an

interpolation algorithm to correctly obtain the correct transmission condition
to be used in the solution of (3). Lastly, an implementation decision has to be
made on how to collect and store the data from neighboring domains before
the interpolation is used to obtain the transmission conditions for an update
in line 14.

Pipeline Schwarz Waveform Relaxation Algorithm 2

1. MPI Initialization

2. parallel for i = . . . 1..N (Sub-domain)
3. for ti = ∆ti . . . T

4. Guess u
[0]
i (z, t), z ∈ ∂Ωi ∩ ∂Ωj

5. end

6. Set t
[0]
i = T

7. end
8. parallel for k = 1 . . .K (Waveform iteration)

9. parallel for i = 1 . . . N (Sub-domain)

10. initialize ∆t
[k]
i

11. set t
[k]
i = ∆t

[k]
i

12. While t
[k]
i ≤ T

13. If t
[k]
i < t

[k−1]
j for all neighbors j

14. Solve for u
[k]
i (t

[k]
i , x)

15. Send transmission data T (u[k]i (t
[k]
i , z)) to neighbor nodes

16. t
[k]
i ← t

[k]
i +∆t

[k]
i

17. end

18. end

19. Check convergence

20. end

21. end

.
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Fig. 2 The error of the waveform iterates at time T is computed relative to monodomain

solution for a 4×4 decomposition of the problem using optimized transmission conditions.
The convergence behavior of the PSWR algorithm is identical to the convergence behavior

of the SWR algorithm.

4 Numerical Experiments

We present results from scaling studies, which vary the number of compu-
tational cores used to compute the PSWR algorithm while keeping total
discretized problem size constant. The diffusion equation ut = k(uxx + uyy)
is solved in R2 using a centered five point finite-difference approximation
in space, and a backward Euler time integrator. In our first scaling study,
400x400 grid points are decomposed into 4x4 non-overlapping domains for
400 total time steps. Optimized robin transmission conditions of the form

Tij [·] =

(
d

dn̂
+ p

)
[·], Tji[·] =

(
d

dn̂
− p

)
[·],

are used, where d
dn̂ is the derivative in the normal direction, and p = 1. (A

recursive formula is used to compute the transmission condition in lieu of dis-
cretizing the derivative in the normal direction). In each experiment a total of
16 full waveform iterations are completed. Timing results are obtained using
the Stampede, a supercomputer at the Texas Advanced Computing Center.
Good parallel efficiency and speedup is observed in spite of the increase in the
number of messages required by the PSWR algorithm. Note that the 4×4×1
case is identically the SWR algorithm.
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Nx ×Ny ×Nk # cores walltime speedup efficiency

4× 4× 1 16 293.02 seconds 1.00 × 1.00
4× 4× 2 32 149.92 seconds 1.95 × 0.98
4× 4× 4 64 75.48 seconds 3.89 × 0.97
4× 4× 8 128 38.71 seconds 7.57 × 0.95
4× 4× 16 256 23.90 seconds 12.26 × 0.77

In our second scaling study, 1600x1600 grid points are decomposed into
16x16 non-overlapping domains domains for 400 total time steps. Again, a
centered five point finite difference stencil, a backward Euler time integra-
tor, and optimized transmission conditions are used. Good parallel efficiency
and speedup is observed even with the increased synchronization/number of
messages in the system.

Nx ×Ny ×Nk # cores walltime speedup efficiency

16× 16× 1 256 295.86 seconds 1.00 × 1.00
16× 16× 2 512 155.98 seconds 1.90 × 0.95
16× 16× 4 1024 77.10 seconds 3.84 × 0.96
16× 16× 8 2048 43.20 seconds 6.85 × 0.86
16× 16× 16 4096 26.65 seconds 11.10 × 0.69

In the above computations, a linear solve on a sub-domain takes O(10−2)
seconds. This relatively small problems size was chosen (100 × 100 on each
sub-domain) so that communications would play a substantial role in the
timing studies. The presented efficiencies can be improved by partitioning
the problem to be more computationally expensive (i.e. more time is spent
in the linear solve).

5 Conclusions

In this paper, we have reformulated classical Schwarz waveform relaxation
to allow for pipeline-parallel computation of the waveform iterates, after an
initial startup cost. Theoretical estimates for the parallel speedup and com-
munication overhead are presented, along with scaling studies to show the
effectiveness of the pipeline Schwarz waveform relaxation algorithm.
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