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It is of interest to solve large scale sparse linear systems on distributed com-
puters, using Krylov subspace methods along with domain decomposition
methods. If accurate subdomain solutions are used, the restricted additive
Schwarz preconditioner allows a reduction to the interface via the Schur
complement, which leads to an unpreconditioned reduced operator for the
interface unknowns. Our purpose is to form a preconditioner for this inter-
face operator by approximating it as a low-rank correction of the identity
matrix. To this end, we use a sequence of orthogonal vectors and their image
under the interface operator, which are both available after some iterations
of the generalized minimal residual method.

The framework of study is purely algebraic and general real sparse non-
symmetric and indefinite matrices are considered. The linear system to solve
is:

Au = f (1)

with A ∈ Rn×n, u ∈ Rn and f ∈ Rn.
Next, we set up the classical notations and terminologies from the algebraic

Schwarz literature.

1 Notations

We denote by V = {1, · · · , n} the set of vertices and by E the set of edges
of the connectivity graph of A: G ≡ G(A) = (V, E). In the present work, we
assume that the structure of A is not too far from being symmetric, which
is common for matrices issued from partial differential equations. For this
reason, edges from E are made of unordered pairs of vertices from V, and the
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Lyon, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France.

francois.pacull@univ-lyon1.fr, damien.tromeur-dervout@univ-lyon1.fr

1



2 François Pacull and Damien Tromeur-Dervout

graph G is said to be unoriented: given two vertices i and j from V, the edge
(i, j) belongs to E if and only if Ai,j 6= 0 or Aj,i 6= 0.

Given a subset S ⊂ V, the induced subgraph G|S consists of the vertices
S and the edges E|S =

{
(i, j) ∈ E / (i, j) ∈ S2

}
⊂ E .

Two vertices are said to be adjacent if they share an edge in E . Given
a subset S ⊂ V, the adjacent set adj(S) contains all the vertices that are
adjacent to at least one vertex of S, but which do not belong to S.

This allows the definition of overlapping and non-overlapping partitions of
V, as used by the algebraic Schwarz preconditioners.

A set P0 = {Vi,0}16i6p of subsets Vi,0 ⊂ V is called a non-overlapping
partition of V if:

- no element of P0 is empty,
- the elements of P0 are pairwise disjoint,
- the union of the elements of P0 is equal to V.

A set P∆ = {Vi,∆}16i6p of subsets Vi,∆ ⊂ V is called an overlapping partition
of V associated with the non-overlapping partition P0 if, for 1 6 i 6 p:

- Vi,0 is a subset of Vi,∆,
- each vertex from the overlap subset Vi,∆ \ Vi,0 is connected to at least

one vertex of Vi,0 within the subgraph G|Vi,∆ .

By connected, it is meant that there exists a path made of successive adjacent
vertices.

The parts or subsets of the partitions are referred to as subdomains. The
techniques for partitioning a graph and growing subdomains from P0 to P∆
are beyond the scope of this paper. Let us only say that a common strategy for
partitioning a graph is to minimize the number of edges that straddle across
the non-overlapping subdomains, while creating p equal size subsets. Also, a
basic technique to get an overlapping partition is to add the adjacent vertices
of each subdomain: Vi,∆ = Vi,0 ∪ adj (Vi,0). This is what is used for all the
computations presented hereafter. Note that this process could be performed
recursively in order to further extend the overlap: Vi,∆ ← Vi,∆ ∪ adj (Vi,∆).

While all the notations and definitions given above allow the description
of the Restricted Additive Schwarz (RAS) preconditioner, another subset of
vertices is required in order to study the reduction of the unknowns: VE0 , the
external interface vertices (we follow the terminology of [1]) of P0, which is
the union of the p subdomain adjacency sets: VE0 = ∪pi=1adj (Vi,0) .

All the other vertices are referred to as the irrelevant vertices (see [2]):
VI0 = V \ VE0 . A simple example of a non-overlapping partition, with marked
external interface vertices, is shown on Fig. 1.

If ni,0 = |Vi,0|, for 1 6 i 6 p, we denote by Ri,0 ∈ Rni,0×n the restriction
operator from Rn onto the subspace associated with Vi,0. Similarly, if ni,∆ =
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Fig. 1 Example of a connectivity graph (left); non-overlapping partition with 2 subdo-
mains (middle); external interface vertices of the non-overlapping partition (right)

|Vi,∆|, we denote by Ri,∆ ∈ Rni,∆×n the restriction operator from Rn onto

the subspace associated with Vi,∆. The special restriction operator R̃i,∆ is

defined as follows: R̃i,∆ = Ri,∆R
T
i,0Ri,0.

If nE0 = |VE0 | and nI0 ≡ n−nE0 , we denote respectively by RE0 ∈ RnE0 ×n and

RI0 ∈ RnI0×n the restriction operators from Rn onto the subspaces associated
with VE0 and VI0 .

Also, the diagonal operator II0 stands for RI0
T
RI0. Note that the transpose

of the restriction operators are the corresponding prolongation operators.
Finally, the subdomain operators, assumed to be non-singular, are denoted
by: Ai,∆ = Ri,∆ARTi,∆.

Despite the fact that the methods related to the reduction to the interface
are well-known in the community, we are not aware of a detailed description
of this reduction in the right RAS preconditioning case: the next section
provides this. We refer to [3] for the left RAS preconditioning case. Anyhow,
convergence behaviors are alike when setting the preconditioner either on the
left or the right side of A, for Krylov subspace methods, since M−1∆ A and
AM−1∆ are similar operators.

2 Reduction to the interface of the right preconditioned
system

The preconditioned operator writes, by definition (see [4]):

AM−1∆ = A

p∑
i=1

R̃Ti,∆A
−1
i,∆Ri,∆

Let us start by stating the following proposition.

Proposition 1. For any overlapping partitioning P∆ associated with the dis-
joint subsets P0, we have:

II0AM−1∆ = II0

The proof is rather lengthy compared to this paper format. Because it only
involves classical algebra, it is left to the reader.
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If we come back to the system (1), the right preconditioned version is the
following:

AM−1∆ û = f, u = M−1∆ û

By introducing a global permutation matrix PT0 = [RI0
T
RE0

T
], which re-

orders the unknowns such that those from the external interface of the non-
overlapping partition VE0 are second, and by permuting this latter system,
we get: P0AM−1∆ PT0 P0û = P0f .

We denote respectively by x̂0 = RI0û and ŷ0 = RE0 û the irrelevant and
external interface unknowns. Proposition 1 yields:[

I 0

RE0 AM−1∆ RI0
T
RE0 AM−1∆ RE0

T

]{
x̂0

ŷ0

}
=

{
RI0f
RE0 f

}
(2)

Let G∆ denote the operator I − RE0 AM−1∆ RE0
T

. With x̂0 = RI0f and h∆
standing for RE0

(
I −AM−1∆ II0

)
f , Eq. (2) can be reduced to the following

system:
(I −G∆) ŷ0 = h∆ (3)

In order to solve the unpreconditioned system (3) with the Generalized

Minimal RESidual (GMRES) method, given an initial guess ŷ
(0)
0 = ŷinit0 , the

evaluation of the initial residual is needed:

r0 = h∆ − (I −G∆) y
(0)
0 = RE0

(
f −AM−1∆

(
RE0

T
ŷinit0 + II0f

))
(4)

Then, in the GMRES outer loop, the following matrix-vector product is re-

quired: w ← (I −G∆) vj = RE0 AM−1∆ RE0
T
vj . This implies solving local prob-

lems on each Vi,∆ subdomain with a right-hand side that is not zero-valued
only in Vi,∆ ∩ VE0 .

Finally, once the iterative method converged to ŷ
(∞)
0 , the solution of the

system (1) is recovered as follows:

u(∞) = M−1∆ û(∞) = M−1∆

(
RE0

T
ŷ
(∞)
0 + II0f

)
The algorithm is described on the right of Fig. 2. At each iteration, we

can monitor the global system’s residual norm from the interface residual
norm. Using Proposition 1, it is easy to check that:

‖f −AM−1∆

(
RE0

T
ŷ0 + II0f

)
‖2 = ‖h∆ − (I −G∆)ŷ0‖2

If solving the interface system instead of the global one represents only a
slight modification of the GMRES algorithm (described on the left of Fig. 2),
the advantage lies in the size of the system, nE0 against n, and thus the
floating point operation count and memory usage of the GMRES method.
The difference between the respective convergence behaviors is not significant,



Preconditioning of the reduced system associated with the RAS method 5

1: Initial guess: u0 ∈ Rn
2: r0 ← f −Au0
3: β ← ‖r0‖2, v1 ← r0/β
4: for j = 1, · · · ,m do

5: w ← AM−1
∆ vj

6: for i = 1, · · · , j do
7: Hi,j ← (w, vi)

8: w ← w −Hi,jvi
9: end for

10: Hj+1,j ← ‖w‖2
11: vj+1 ← w/Hj+1,j

12: end for
13: Vm = [v1, · · · , vm]

14: Hm = {Hi,j/1 6 i 6 m+ 1, 1 6 j 6 m}
15: zm ← argminz‖βe1 −Hmz‖2
16: u← u0 +M−1

∆ Vmzm

1: Initial guess: ŷ0 ∈ RnE0
2: r0 ← RE0

(
f −AM−1

∆

(
RE0

T
ŷ0 + II0f

))
3: β ← ‖r0‖2, v1 ← r0/β

4: for j = 1, · · · ,m do

5: w ← RE0 AM
−1
∆ RE0

T
vj

6: for i = 1, · · · , j do

7: Hi,j ← (w, vi)

8: w ← w −Hi,jvi
9: end for

10: Hj+1,j ← ‖w‖2
11: vj+1 ← w/Hj+1,j

12: end for

13: Vm = [v1, · · · , vm]

14: Hm = {Hi,j/1 6 i 6 m+ 1, 1 6 j 6 m}
15: zm ← argminz‖βe1 −Hmz‖2
16: u←M−1

∆

(
RE0

T
(ŷ0 + Vmzm) + II0f

)
Fig. 2 GMRES solvers for the global (left) and the interface (right) unknowns

as shown on an example in Fig. 3. Indeed, we can see from Eq. (2) that the
spectrum of AM−1∆ is equal to the spectrum of I − G∆ augmented with nI0
one-valued eigenvalues.

Fig. 3 Full GMRES con-

vergence of the global and
interface systems. The

GT01R matrix and RHS

from the UF sparse matrix
collection [5] is used, with

a zero initial guess. From

left to right, the domain
is divided into 2, 4 and

8 parts. The number of
primary unknowns is 7980,

while the number of inter-

face unknowns is 420, 1260,
and 2940 respectively from
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The next section is devoted to the preconditioning applied to the reduced
system (3).

3 Preconditioning the reduced system

The main difficulty with the preconditioning of I −G∆ is that G∆ is rather
dense, as shown with an example in Table 1.
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Matrix A G∆

Number of parts p N.A. 2 4 8
Size 7980 420 1260 2940

Density (%) 0.68 66.06 51.10 25.72

Table 1 Density percentage of matrices A and G∆. The GT01R matrix and RHS from

the UF sparse matrix collection [5] is used.

The cost of an approximate inverse approach appears to be prohibitive
regarding computational time and memory. Our motivation is to only use
the matrix-vector product (I − G∆)v in order to build the preconditioning
strategy.

If we have a set Vq of q orthonormal vectors of size nE0 , we can approach

G∆ using the orthogonal projection matrix VqV
T
q : G̃∆ ≡ VqV

T
q G∆VqV

T
q . If

we note Wq the image of Vq under G∆, and Ĝ∆ ≡ V T
q G∆Vq = V T

q Wq ∈ Rq×q,
we get by Woodbury matrix identity:

(I − G̃∆)−1 = I − Vq(I − Ĝ−1∆ )−1V T
q = I + Vq((I − Ĝ∆)−1 − I)V T

q (5)

= I + Vq((I − V T
q Wq)

−1 − I)V T
q (6)

As we can see on Fig. 2, we already have an orthonormal basis Vq =
[1, · · · , vq] after q iterations of the GMRES algorithm. Also, the image of
each vector of Vq under (I −G∆) is computed on line 5 of the algorithm on
the right side. Thus we need to store theses images Wq = (I−G∆)Vq in order
to build the preconditioner (6) and use it subsequently. Some results of this
strategy are shown on Fig. 5: in this approach, the preconditioner is build
first and then kept throughout the GMRES process. On the whole, we ob-
serve a trade-off between the number of GMRES iterations used to build the
preconditioner q and those saved thanks to the preconditioning. If we note
mconv the number of GMRES iterations required to reach a given tolerance,
we observe that q + mconv remains constant for all values of q.

Indeed, this interface preconditioner appears to be a cheap and efficient
way to avoid stagnation when restarting by keeping some of the most re-
cent convergence information. This is why we tested it on the GMRES(q)
technique. At each restart, a new preconditioner is built using the just com-
puted Vq basis. This preconditioner is only used for the subsequent q GMRES
iterations. The left-preconditioned GMRES(q) algorithm for the interface un-
knowns is described on Fig. 4.

Some results are shown on Fig. 6: this preconditioned restarted GMRES
method appears to be robust, while avoiding the growth of memory and
orthogonalization time of the full GMRES approach.

Actually, by plugging the equality I−Ĝ∆ = V T
q (I−G∆)Vq into Eq. (5), it

appears that this preconditioner is related to the preconditioner by deflation
from [6], but with a fixed-size approximate invariant subspace that is fully
renewed at each restart.
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1: Choose tol > 0

2: Initial guess: ŷ0 ∈ RnE0
3: restart← 0

4: convergence← false

5: repeat

6: r0 ← RE0 (f−AM−1
∆ (RE0

T
ŷ0+II0f))

7: if restart = 1 then

8: r0 ← (I + Vq(Q− I)V Tq )r0
9: end if

10: β ← ‖r0‖2, v1 ← r0/β

11: for j = 1, · · · , q do

12: w ← RE0 AM
−1
∆ RE0

T
vj

13: wj ← w
14: if restart = 1 then

15: w ← (I + Vq(Q− I)V Tq )w

16: end if
17: for i = 1, · · · , j do

18: Hi,j ← (w, vi)

19: w ← w −Hi,jvi
20: end for
21: Hj+1,j ← ‖w‖2
22: vj+1 ← w/Hj+1,j

23: end for
24: Vq = [v1, · · · , vq ]
25: Wq = [w1, · · · , wq ]
26: Hq = {Hi,j / 1 6 i 6 q + 1, 1 6 j 6 q}
27: zq = argminz‖βe1 −Hqz‖2
28: ŷq ← ŷ0 + Vqzq
29: if ‖βe1 −Hqzq‖2 < tol then

30: convergence← true

31: else
32: restart← 1

33: Q← (I − V Tq Wq)−1

34: ŷ0 ← ŷq
35: end if

36: until convergence

37: u←M−1
∆ (RE0

T
ŷq + II0f)

Fig. 4 GMRES(q) solver for the interface unknowns with a variable left preconditioner

Fig. 5 Full GMRES con-
vergence of the interface

system preconditioned on

the right side. The GT01R
matrix and RHS from the

UF sparse matrix collec-

tion [5] is used. The initial
guess is the outcome of

the preconditioner build-
ing process. The domain is

divided into 8 parts. The

value of q, the size of the
approximation space for
G̃∆, ranges from 0 (right)
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4 Conclusion

At first, we saw that if accurate subdomain solutions are employed, the right
RAS preconditioned system can be reduced to a system of interface equa-
tions. The interface unknowns are located at the external interface vertices
of the non-overlapping partition. Then, our purpose was to approximate the
reduced interface operator as a low-rank correction of the identity matrix,
using a sequence of Arnoldi vectors and their image. As might be expected,
it is observed that the total cost of the linear solver regarding the number of
applications of the Schwarz preconditioner remains approximately constant:
what is gained by using an unvarying interface preconditioner is counter-
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Fig. 6 GMRES conver-

gence of the interface
system for three differ-

ent strategies: full GM-

RES, GMRES(20) and a
left-preconditioned GM-

RES(20). The GT01R ma-

trix and RHS from the UF
sparse matrix collection

[5] is used. The domain is

divided into 4 parts.
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balanced with its building cost. However, this technique becomes beneficial
when the restarted variant of the Krylov subspace method is used along with
a new interface preconditioner at each restart. A link with the deflation pre-
conditioner was also presented.
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express their thanks to Stéphane Aubert for some stimulating conversations
and suggestions.

References

[1] Yousef Saad and Maria Sosonkina. Distributed Schur complement
techniques for general sparse linear systems. SIAM J. Sci. Comput.,
21(4):1337–1356 (electronic), 1999/00.

[2] Erik Brakkee and Peter Wilders. A domain decomposition method for
the advection-diffusion equation. Technical report, Delft University of
Technology, 1994.

[3] François Pacull and Stéphane Aubert. GMRES acceleration of restricted
Schwarz iterations. In Domain Decomposition Methods in Science and
Engineering XXI, pages 725–732. Springer - Lecture Notes in Computa-
tional Science and Engineering, Vol. 98, 2014.

[4] Xiao-Chuan Cai and Marcus Sarkis. A restricted additive Schwarz pre-
conditioner for general sparse linear systems. SIAM J. Sci. Comput.,
21(2):792–797 (electronic), 1999.

[5] Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix
collection. ACM Trans. Math. Software, 38(1):Art. 1, 25, 2011.

[6] Jocelyne Erhel, Kevin Burrage, and Bert Pohl. Restarted GMRES pre-
conditioned by deflation. J. Comput. Appl. Math., 69(2):303–318, 1996.


