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1 A Non-overlapping DDM with a Penalty Parameter

A non-overlapping domain decomposition method based on augmented La-
grangian with a penalty term was introduced in the previous works by the
authors (Lee and Park [2009, 2012]), which is a variant of the FETI-DP
method. In this paper we present a further study focusing on the case of
small penalty parameters in terms of condition number estimate and practi-
cal efficiency. The full analysis of the proposed method can be found in Lee
and Park [2013].

Throughout the paper, we denote by λA
min

and λA
max

the minimum eigen-
value and the maximum eigenvalue of a matrix A, respectively. To avoid the
proliferation of constants, we will use A . B and A & B to represent the
statements that A ≤ (constant)B and A ≥ (constant)B, respectively, where
the positive constant is independent of the mesh size, the subdomain size,
and the number of subdomains. The statement A ≈ B is equivalent to A . B
and A & B.

We first review the non-overlapping domain decomposition method with
a penalty term in the previous works. Then, we state how we can enhance
this method in terms of a better choice of a penalty parameter.

We consider the following Poisson model problem with the homogeneous
Dirichlet boundary condition

−∆u = f in Ω,

u = 0 on ∂Ω,
(1)

where Ω is a bounded polygonal domain in R
2 and f is a given function in

L2(Ω). Let Th denote a quasi-uniform triangulation on Ω and X̂h the space
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of the conforming P1 elements associated with Th. We are concerned with a
discretized variational problem of (1) as follows: find uh ∈ X̂h such that

a(uh, vh) = (f, vh) ∀vh ∈ X̂h, (2)

where

a(uh, vh) =

∫

Ω

∇uh · ∇vh dx, (f, vh) =

∫

Ω

fvh dx.

We start with recalling an iterative solver of (2) in Lee and Park [2009,
2012], which is a non-overlapping domain decomposition algorithm based on
an augmented Lagrangian. We decompose Ω into non-overlapping subdo-
mains {Ωj}

J
j=1

as open sets, where the boundary ∂Ωj is aligned with Th
and the diameter of Ωj is Hj . On each subdomain, the triangulation Tj is
the triangulation of Ωj inherited from Th and matching grids are taken on
the boundaries of neighboring subdomains across the interface Γ . Here the
interface Γ is the union of the common interfaces among all subdomains,
i.e., Γ =

⋃

j<k Γjk, where Γjk denotes the common interface of two adjacent
subdomains Ωj and Ωk.

Based on the non-overlapping subdomain decomposition, a partitioned
problem is obtained as follows:

min
v∈

∏
J
j=1

X
j

h





1

2

J
∑

j=1

∫

Ωj

|∇v|2 dx− (f, v)



 (3a)

subject to vj = vk on Γjk for j < k, (3b)

where Xj
h is the restriction of X̂h on a subdomain Ωj . To make a localized

minimization problem recover the original solution of (2), the continuity con-
straint (3b) needs to be satisfied on the interface Γ in an appropriate manner
(e.g. Burman and Zunino [2006], Farhat et al. [2000], Farhat and Roux [1991],
Glowinski and Le Tallec [1990]).

The FETI-DP method, one of the most advanced non-overlapping domain
decomposition algorithms, imposes the continuity differently at vertices and
the remaining interface nodes except vertices in terms of the choice of finite
elements. The continuity at vertices is enforced strongly in a manner that
subdomains sharing a vertex have the common value at the vertex while the
continuity on the interface except vertices is enforced weakly by introducing
Lagrange multipliers. Hence the FETI-DP method starts with the saddle-
point problem

L(uh, λh) = max
µh∈RM

min
vh∈Xc

h

L(vh, µh), (4)

where a Lagrangian functional L is defined on Xc
h × R

M as
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L(v, µ) =
1

2

J
∑

j=1

∫

Ωj

|∇v|2 dx− (f, v) + 〈Bv, µ〉.

Here, Xc
h denote the subspace of

∏J
j=1

Xj
h obtained by enforcing the vertex

continuity, B is a signed Boolean matrix which plays a role in making val-
ues defined individually on the interface pointwise-matched, M represents
the number of constraints used for imposing the pointwise matching on the
interface and 〈·, ·〉 is the Euclidean inner product in R

M .
In Mandel and Tezaur [2001], for the FETI-DP method accompanied by

the Dirichlet preconditioner it is well-known that the condition number of the
resulting dual problem from (4) grows asymptotically as O(1 + ln(H/h))2,
where H is the subdomain size and h is the mesh size. It shows that the con-
vergence slows down only due to the increase of H/h, where (H/h)2 are the
local problem size. Due to such a scalable property of the FETI-DP method,
there seems to be nothing to improve as a parallel algorithm only if parallel
machines with infinitely many CPUs or cores are available. But, keeping in
mind that most of ordinary users have limited computing resources, the con-
dition number growth with respect to the increase of H/h is unsatisfactory.
In this view, Lee and Park [2009, 2012] proposed a dual iterative substruc-
turing method with a penalty term which plays a key role in enhancing the
convergence to the extent of the constant condition number bound indepen-
dent of both H and h. A penalty term ηJ is considered, which consists of
a positive penalty parameter η and a measure of the jump on the interface.
The addition of a penalty term ηJ to the Lagrangian L yields a saddle-point
problem for an augmented Lagrangian functional Lη such as

Lη(uh, λh) = max
µh∈RM

min
vh∈Xc

h

Lη(vh, µh), (5)

where

Lη(v, µ) = L(v, µ) +
1

2
ηJ (v, v).

Here the penalty term J is a bilinear form on Xc
h ×Xc

h defined as

J (u, v) =
1

h

∑

j<k

∫

Γjk

(uj − uk)(vj − vk) ds,

where h = maxj=1,··· ,J hj with the mesh size hj of Tj .
The problem (5) is expressed in the algebraic form





AΠΠ AΠ∆ 0
AT

Π∆ A∆∆ BT
∆

0 B∆ 0









uΠ

u∆

λ



 =





fΠ
f∆
0



 ,

where λ indicates the Lagrange multipliers introduced for imposing the con-
tinuity constraint across the interface, Π the degrees of freedom associated
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with both the interior nodes and the subdomain corners, and ∆ the remain-
ing part of the degrees of freedom on the interface. The matrix J results from
the penalty term J , which is written as

J = BT
∆DMB∆, (6)

where DM is the block diagonal matrix with a diagonal block 1

h
Me. Here Me

is the 1-D mass matrix on each edge. Eliminating uΠ and u∆ successively,
we have a dual system

Fηλ = dη (7)

where
Fη = B∆S−1

η BT
∆, dη = B∆S−1

η (f∆ −AT
Π∆A−1

ΠΠfΠ)

with
Sη = S + ηJ = (A∆∆ −AT

Π∆A−1

ΠΠAΠ∆) + ηJ. (8)

For the proposed dual iterative substructuring method which results in
the dual problem (7), we are concerned with two key properties: one is the
convergence of the primal solution uh of the saddle-point problem (5) from
which (7) is originated, to the exact weak solution of (1) and the other is
the condition number of Fη which determines the convergence rate of dual
iterations on (7). In this context, we now discuss the choice of a penalty
parameter in the proposed dual iterative substructuring method.

Let us first look over what effect the choice of the penalty parameter has
on the convergence of the finite element solution to the weak solution of (1).
In finite element formulations based on penalty methods for (3) (cf. Babuška
[1973], Burman and Zunino [2006]), the choice of a sufficiently large penalty
parameter is required for the stability of a concerning finite element formu-
lation, which is necessary for the convergence of the finite element solution
to the exact weak solution of (1). On the other hand, the penalty parame-
ter η plays a different role in the saddle-point formulation (5) based on an
augmented Lagrangian functional because Lagrange multipliers as well as a
penalty term are introduced to enforce the continuity across the interface.
More precisely, such a role difference was confirmed in Lee and Park [2009]
by the fact that the primal solution uh of the saddle-point problem (5) is
exactly equal to the finite element solution of (2) regardless of the choice of
η. Hence there is no need to consider a right choice of η in the aspect of the
convergence of a finite element solution to the solution of (1).

Let us next discuss the choice of the penalty parameter in terms of the
condition number of Fη. The convergence study for dual iterations in Lee and
Park [2009, 2012] shows that the dual system (7) has a constant condition
number bound independent of H and h where a sufficiently large penalty
parameter is taken. On the contrary, we have observed through numerical
results that there might be an estimated parameter η∗ < 10 with which the
proposed dual iterative algorithm is almost optimal in terms of its condition
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number. Based on such observation, we shall focus on the case of small penalty
parameters throughout the following sections.

2 Condition Number Estimate

In this section, we find the relationship between the standard FETI-DP op-
erator and the proposed dual operator in algebraic form. Based on the rela-
tionship, we carry out convergence analysis in terms of the condition number
of the dual system Fη without size limitation of the penalty parameter. As
results, it is confirmed why a fast convergence of the dual iteration is attained
even if a small η is taken.

We first have the following condition number estimate of the concerned
dual system based on a key relationship between two matrices Fη and F ,
where F is the standard FETI-DP operator as F = B∆S−1BT

∆.

Theorem 1. For any η > 0, the condition number κ(F ) is estimated as

κ(Fη) ≤
CF,DM

η + CF,DM

κ(F ) +
η

η + CF,DM

κ(DM ), (9)

where CF,DM
= (λF

max
λDM

min
)−1.

Remark 1. Theorem 1 shows the change of κ(Fη) with respect to a choice of
η as well as the connection of κ(Fη) with κ(F ). In particular, κ(Fη) becomes
close to κ(F ) as η decreases to zero. In addition, it follows from (9) that

κ(Fη) ≤ κ(DM ) +
CF,DM

(κ(F )− κ(DM ))

η + CF,DM

, (10)

which implies that the result shown in Figure 1 in Lee and Park [2009] is in
agreement with (10) when κ(F ) > κ(DM ).

Then the extreme eigenvalues of matrices F and DM can be estimated as

λDM

min
& 1, λDM

max . 1

λF
min

& 1, λF
max

. max
j=1,··· ,J

(

Hj

hj

(

1 + ln
Hj

hj

))

,

which imply that

κ(DM ) . 1

κ(F ) . max
j=1,··· ,J

(

Hj

hj

(

1 + ln
Hj

hj

))

.

Hence it is noted that either κ(F ) ≤ κ(DM ) or κ(F ) > κ(DM ) holds
according to the size of H/h. First, in the case of small H/h such that
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κ(F ) ≤ κ(DM ),

it follows from Theorem 1 that, for any η > 0,

κ(Fη) ≤ κ(DM ) . 1. (11)

Next, in the following theorem we will see the case of large H/h such that

κ(F ) > κ(DM ).

Using the estimated extreme eigenvalues ofDM and F , we can characterize
bounds of the condition number of the concerned dual system as follows.

Theorem 2. For any H/h such that

κ(F ) > κ(DM ),

there is a positive constant Copt independent of H and h such that

κ(Fη) < κ(DM ) + Copt for any η ≥ Copt,

where Copt ≈ 1.

Remark 2. The convergence studies in Lee and Park [2009, 2012] for a dual
iterative substructuring method with a penalty term were limited to the case
when a sufficiently large penalty parameter η is used. The estimate (11)
and Theorem 2 show why a faster convergence of the dual iteration in the
proposed method is attained in comparison with the FETI-DP method even
if a relatively small η is taken while Theorem 1 for a large η is identical to
the previous results in Lee and Park [2009, 2012].

Remark 3. Due to length limitation, this paper is focused on the convergence
analysis for the case of small penalty parameters in 2-D. More works for
3-D extension and computational issues such as the preconditioning of the
subdomain problems can be found Lee and Park [2013].

3 Numerical Results

In this section, computational results are presented, which are in agreement
with the theoretical bound estimated in Sect. 2. We consider the model prob-
lem (1) with the exact solution

u(x, y) =

{

y(1− y) sin(πx) in 2-D
sin(πx) sin(πy)z(1− z) in 3-D

for Ω = (0, 1)d, d = 2, 3. We use the conjugate gradient method with a
constant initial guess (λ0 ≡ 1). The stop criterion is the relative reduction of
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the initial residual by a chosen TOL

‖rk‖2
‖r0‖2

≤ TOL,

where rk is the dual residual error on the kth CG iteration and TOL = 10−8.
Here, discretization parameters h, H , and J are used, which stand for the
mesh size, the subdomain size, and the number of subdomains, respectively.
Through numerical tests, Ω in 2-D is decomposed into J square subdomains
with J = 1/H × 1/H . Each subdomain is partitioned into 2 × H/h × H/h
uniform triangular elements. In 3-D, Ω is decomposed into J cubic subdo-
mains with J = 1/H × 1/H × 1/H while each subdomain is partitioned into
H/h×H/h×H/h uniform cubic elements.

In Table 1 for the two-dimensional problem, the condition numbers of
the dual system are presented in the cases with η in [0, 10]. In addition, for
comparison with the case with a large η, the result for η = 106 is presented.
For each η > 0, the condition number κ(Fη) is bounded by a constant even if
H/h increases. In Table 1, any penalty parameter chosen in (1/2, 10) improves
the condition number regardless of the increase of H/h. In addition, the
condition numbers for the case with η ∈ (1/2, 10) are less than that for the
case with a large η. According to the condition number and the iteration
count, η = 2 is regarded as an optimal one. Table 2 for 3-D shows similar
results in 2-D; η = 1 seems to be optimal as H/h increases.

Table 1 Condition number of Fη for a small η where J = 4× 4 in 2-D

η
H
h

= 4 H
h

= 8 H
h

= 16 H
h

= 32

κ(Fη) iter. # κ(Fη) iter. # κ(Fη) iter. # κ(Fη) iter. #

0 7.2033 14 2.2901e+1 23 5.9558e+1 33 1.4707e+2 48

0.2 3.7811 12 5.6829 15 6.4744 18 6.7436 19
0.4 2.6637 10 3.3617 13 3.5166 13 3.6410 14
0.6 2.0733 9 2.3969 10 2.5127 11 2.5753 12
0.8 1.6990 8 1.9367 9 1.9974 10 2.0247 10

1 1.5030 7 1.6468 8 1.6801 9 1.6957 9
2 1.1304 5 1.1067 5 1.1053 5 1.1050 5
4 1.3353 6 1.4469 7 1.4625 8 1.4477 8
6 1.5050 7 1.7008 9 1.7470 9 1.7378 9
8 1.6130 7 1.8691 9 1.9404 10 1.9387 10
10 1.6875 7 1.9945 10 2.0799 11 2.0868 11

106 2.0938 3 2.7170 7 2.9243 13 2.9771 14
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Table 2 Condition number of Fη for a small η where J = 4× 4× 4 in 3-D

η
H
h

= 4 H
h

= 8 H
h

= 16 H
h

= 32

κ(Fη) iter. # κ(Fη) iter. # κ(Fη) iter. # κ(Fη) iter. #

0 8.1805e+1 73 3.0183e+2 107 1.1892e+3 153 4.6946e+3 218

0.2 6.9551 22 6.8882 22 6.7708 21 6.6486 21
0.4 4.4201 18 4.6965 18 4.8197 18 4.8325 17
0.6 3.8658 16 4.3214 16 4.4810 17 4.4959 16
0.8 3.5613 15 4.0772 16 4.2515 16 4.2834 16
1 3.3611 15 3.9076 15 4.0901 15 4.1292 15
2 3.1992 14 4.0118 16 4.3020 16 4.3345 16
4 3.6343 15 4.8935 17 5.3381 18 5.4422 19
6 3.8905 15 5.4275 17 5.9726 19 6.1152 20
8 4.0564 15 5.7842 18 6.4011 20 6.5659 21
10 4.1740 15 6.0390 19 6.7099 21 6.8890 21

106 4.8585 7 7.5658 14 8.5609 16 8.8699 18
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