
A Newton-Krylov-FETI-DP Method
with an Adaptive Coarse Space
Applied to Elastoplasticity

Axel Klawonn1, Patrick Radtke1, and Oliver Rheinbach2

1 Introduction

We consider a Newton-Krylov-FETI-DP algorithm to solve problems in
elastoplasticity. First, the material model and its discretization will be de-
scribed. The model contains a Prandtl-Reuss flow rule and a von Mises flow
function. We restrict ourselves to the case of perfect elastoplasticity; thus,
there is no hardening. For more information on elastoplasticity; see, e.g.,
Carstensen and Klose [2002], Han and Reddy [2013], Simo and Hughes [1998].
In this material model we will have local nonlinearities introduced by plastic
material behavior in activated zones of the domain. For the finite element
discretization we follow the framework given in Carstensen and Klose [2002].
Second, we will briefly present the linearization and the FETI-DP method
which is used to solve the linearized problems. For more details on the FETI-
DP algorithm, see, e.g., Klawonn et al. [2002, 2008], Farhat et al. [2001],
Toselli and Widlund [2005]. The convergence of the Newton-Krylov-FETI-
DP method using a standard coarse space with vertices and edge averages
can deteriorate when the plastically activated zone intersects the interface
introduced by the domain decomposition. In this case, we use an adaptive
coarse space which successfully decreases the number of cg iterations and the
condition numbers of the preconditioned linearized systems. Only a small
amount of adaptive constraints is needed if the plastically activated zone is
restricted to a small part of the domain. Additional constraints are needed
mainly in the final time and Newton steps. The additional constraints for
the coarse space are chosen by a strategy proposed in Mandel and Soused́ık
[2007] for linear elliptic problems. In contrast to their implementation, here,
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the additional constraints will be implemented using a deflation approach;
see Klawonn and Rheinbach [2012].

2 Elastoplastic Material Model and Discretization

The material model is derived from the quasi-static equation of equilibrium

div σ(x, t) = f(x, t);

see, e.g., Carstensen and Klose [2002], Simo and Hughes [1998], Han and
Reddy [2013]. Let d be the dimension of the domain. Multiplying the equation
with v ∈ H1

D(Ω)d := {v ∈ H1(Ω)d : v = 0 on ΓD} and application of the
Gauss theorem yields the weak formulation: Find u ∈ H1(Ω)d which satisfies
u = w on ΓD, such that for all v ∈ H1

D(Ω)d:

∫

Ω

σ(u) : ǫ(v)dx =

∫

Ω

f · vdx+

∫

ΓN

g · vds. (1)

By discretization in time using the implicit Euler method we obtain:
Find un ∈ H1(Ω)d with un = w on ΓD, such that ∀v ∈ H1

D(Ω)d

∫

Ω

σn : ε(v) dx =

∫

Ω

fn v dx+

∫

ΓN

gn · v ds,

where σn is dependent on the displacement un. This dependency is deter-
mined by the von Mises flow function and the chosen type of hardening. In
this article we consider perfect elastoplastic material behavior and hardening
effects are absent. In this case the von Mises flow function is given by Φ(σ) =
|dev(σ)| − σy , where σy is the yield point and dev (σ) = σ− 1

d
tr (σ)Id×d. The

tension tensor in the n-th timestep is then linear elastic if Φ(σn) ≤ 0 and
plastic otherwise. In the first case we have

σn = (λ + µ)tr(ε(un − un−1) + C
−1σn−1) + 2µdev(ε(un − un−1) + C

−1σn−1)

with the Lamé constants λ, µ and the fourth order elasticity tensor C. In the
second case the tension tensor in the n-th timestep reads

σn = (λ+ µ)tr(ε(un − un−1) + C
−1σn−1)

+ σy

dev(ε(un − un−1) + C−1σn−1)

|dev(ε(un − un−1) + C−1σn−1)|
.

Note that in the first case, we have a linear relationship between the tension
and the displacement, while in the second case, we have a nonlinearity intro-
duced by normalizing the deviatoric term. For a more detailed description
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how to obtain the time discrete tension tensor explicitly for different types
of hardening, see Carstensen and Klose [2002].

3 Linearization

We need to linearize the nonlinear discrete problem in every time step. For
this we will represent the problem as a root finding problem. We define the
p-th component of the vector field F by

Fp(un) =

∫

Ω

σn : ε(ϕp) dx−

∫

Ω

fn · ϕp dx−

∫

ΓN

gn · ϕp ds.

Then the nonlinear problem reads: Solve F (un) = 0. The Newton update in
the (k + 1)-th Newton step is uk+1

n = uk
n +∆uk+1

n with ∆uk+1
n defined by

DF (uk
n)∆uk+1

n = −F (uk
n),

where the tangential stiffness matrix DF is given by (DF (uk
n))pq =

∂Fp(u
k
n)

∂uk
n,q

.

In our numerical examples we iterate in each timestep until the residual
satisfies ||F (uk

n)||2 ≤ 10−10+10−6||F (u0
n)||2, where u

0
n := 0; for the stopping

criterion, see, e.g. [Carstensen and Klose, 2002, p. 171, l. 34 of the source
code], [Kelley, 1995, p. 73, (5.4)]. To guarantee the convergence we will use the
Armijo rule, see, e.g., Kelley [1995], as a line search algorithm. In each Newton
iteration we will first set τ = 1 as an initial step length and then assemble local

stiffness matrices K(i) = DF (u
k,(i)
n ) and right-hand sides f (i) = F (u

k,(i)
n ),

i = 1, . . . , N. Then we will solve the linearized system

DF (uk
n)∆uk+1

n = −F (uk
n)

with FETI-DP as described in the following section. Our trial update is given
by uk+1

n,τ = uk
n + τ∆uk+1

n . We test if the Armijo condition

||F (uk+1
n,τ )||2 < (1− 10−4 · τ)||F (uk

n)||2

is satisfied. In this case we update u
k+1,(i)
n ← u

k+1,(i)
n,τ . Otherwise we halve

the step length τ ← τ/2.

4 FETI-DP and Deflation

We will now briefly describe the FETI-DP algorithm. For more details on
FETI-DP, see, e.g., Klawonn et al. [2008, 2002], Toselli and Widlund [2005].
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Let the primal variables, for example, vertices or edge averages in subdomain

Ωi be denoted by u
(i)
Π and the remaining variables be denoted by u

(i)
B , and the

corresponding stiffness matrices and right-hand sides be sorted accordingly.
Then, we have for the local stiffness matrices K(i) and local load vectors f (i)

K(i) =

[
K

(i)
BB K

(i)T
ΠB

K
(i)
ΠB K

(i)
ΠΠ

]
and f (i) =

[
f
(i)
B

f
(i)
Π

]
,

respectively. We denote by KBB = diagNi=1K
(i)
BB, KΠΠ = diagNi=1K

(i)
ΠΠ , and

KΠB = [K
(1)
ΠB , . . . ,K

(N)
ΠB ]. We introduce the following notation

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
=

[
IB 0
0 RT

Π

] [
KBB KT

ΠB

KΠB KΠΠ

] [
IB 0
0 RΠ

]
,

where RT
Π is the partial assembly operator in the primal variables. We define a

jump operatorBB consisting of entries 0, 1, and −1, which enforces continuity
in the remaining unknowns by BBuB = 0. Then the FETI-DP system reads
Fλ = d, with

F = BBK
−1
BBB

T
B +BBK

−1
BBK̃

T
ΠBS̃

−1
ΠΠK̃ΠBK

−1
BBB

T
B,

d = BBK
−1
BBfB −BBK

−1
BBK̃

T
ΠB S̃

−1
ΠΠ

(
f̃ − K̃ΠBK

−1
BBfB

)
,

where S̃ΠΠ = K̃ΠΠ − K̃ΠBK
−1
BBK̃

T
ΠB. We further partition the remaining

variables u
(i)
B = [u

(i)T
I u

(i)T
∆ ]T into dual variables on the interface u

(i)
∆ and inner

variables u
(i)
I and the stiffness matrices and right-hand sides accordingly.

Define K∆∆ = diagNi=1K
(i)
∆∆, KII = diagNi=1K

(i)
II , and K∆I = [K

(1)
∆I . . .K

(N)
∆I ].

The FETI-DP algorithm is the preconditioned conjugate gradient algorithm
applied to Fλ = d with the Dirichlet preconditioner

M−1 = BB,D [0 I∆]
T (

K∆∆ −K∆IK
−1
II KT

∆I

)
[0 I∆]BT

B,D.

An additional coarse level in the FETI-DP method can be introduced by
a deflation approach; see, e.g., Klawonn and Rheinbach [2012] for more de-
tails. We will aggregate constraints as columns in a matrix U . The constraint
UTBu = 0 will be enforced by introducing projections P = U(UTFU)−1UTF
and Q = I − P . Then the projected system QTFλ = QTd will be solved it-
eratively, while PTFλ = PTd will be solved directly. We can also solve the
original system with the balancing preconditioner M−1

BP = QM−1QT +PF−1

whereM−1 is the classical Dirichlet preconditioner instead; see, e.g., Klawonn
and Rheinbach [2012].



Newton-Krylov Adaptive FETI-DP for Elastoplasticity 5

5 Adaptive Coarse Space

The presentation in this section follows the ideas proposed in Mandel and
Soused́ık [2007] for linear elliptic problems. We will start our Newton-Krylov-
FETI-DP algorithm with an initial coarse space consisting of vertex con-
straints as primal variables enforced by subassembly. It is well known that

the condition number satisfies κ(M−1F ) ≤ ω := sup
w∈W̃

|PDw|2S
|w|2

S

, where

PD := BT
B,DBB; see, e.g., Klawonn et al. [2002], Toselli and Widlund

[2005]. Consider a local edge between the subdomains Ωi and Ωj and de-
fine SEij

:= diag (S(i), S(j)). Let BEij
be a local version of the Matrix B

defined as the matrix with the rows of [B(i) B(j)], which consist of a 1

and a −1 and are zero elsewhere. Let W̃Eij
be the subspace of functions in

W (i) ×W (j) which are continuous in vertices which both subdomains have
in common and define

ωEij
:= sup

wEij
∈W̃Eij

|PD,Eij
wEij
|2SEij

|wEij
|2SEij

as the local condition number estimator, where PD,Eij
= BT

D,Eij
BEij

and
BD,Eij

is a scaled version of BEij
. Define ω̃ := max

Eij⊂Γ
ωEij

as the maximum

ωEij
of all edges on the interface. Then ω̃ is expected to be a good estimator

of the bound ω of the condition number κ(M−1F ). We choose a prescribed
tolerance TOL ≥ 1 for the condition number. With local orthogonal projec-
tions ΠEij

from W (i) ×W (j) onto W̃Eij
and Π onto range (ΠEij

SEij
ΠEij

)
we solve the following local generalized eigenvalue problem on each edge

ΠΠEij
PT
D,Eij

SEij
PD,Eij

ΠEij
ΠwEij

= µEij

(
Π

(
ΠEij

SEij
ΠEij

+ σ(I −ΠEij
)
)
Π + σ(I −Π)

)
wEij

,

where σ > 0 is a shift parameter here chosen as maxi(SEij
)ii; see also Man-

del and Soused́ık [2007]. We are only interested in eigenvectors to eigenvalues
which exceed the tolerance TOL. Let the eigenvalues µEij,l, l = 1, .., n be
sorted in a decreasing order. For each eigenvector wEij ,l to an eigenvalue
µEij ,l ≥ TOL, l = 1, . . . , k we set uEij ,l = BD,Eij

SEij
PD,Eij

wEij ,l. Let uEij ,l

be vectors representing functions in the Lagrange multiplier space that coin-
cide with uEij ,l on the edge Eij and that are zero elsewhere. For each edge
we collect the uEij ,l as colums of a matrix U and apply the modified Gram-
Schmidt algorithm to detect and remove linearly dependent constraints.
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6 Numerical Examples

In the following we will present numerical examples. Consider a square
domain Ω = (0, 1)2 with zero Dirichlet boundary conditions imposed on
the lower edge {(x, y) ∈ ∂Ω|y = 0} which is exposed to a surface force
g(x, y, t) = (150t, 0)T if x ∈ {(x, y) ∈ ∂Ω|y = 1} and g(x, y, t) = 0 elsewhere.
The material has a Young modulus of E = 206900, a Poisson ratio of ν = 0.29
and σy = 200. We compute the solution in the time interval T = [0, 0.45] in
nine time steps of step length ∆t = 0.05. The space is discretized with P2 fi-
nite elements in all our examples. In the first set of numerical experiments we

     150 t
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Fig. 1 Unit square with zero Dirichlet boundary conditions at the lower edge y = 0
exposed to a surface force g(t) = (150t, 0)T at the upper edge y = 1 (left). Displacement
magnified by factor 20 and shear energy density in the last timestep (right). Material
parameters E = 206900, ν = 0.29 and σy = 200.

n = H/h N = 1/H max. cond max. CG-It. Newton its
per timestep

20 2 4.06 13 1/1/1/4/4/6/7/9/11

30 2 4.53 14 1/1/3/5/5/7/8/10/11

40 2 4.87 14 1/1/3/4/5/7/9/13/13

Table 1 FETI-DP maximal condition numbers and iteration counts in Newton’s scheme
with a coarse space consisting of vertices and edge averages. We use P2 finite elements in
all our examples.

consider a classical coarse space with only vertex and edge average constraints
using different partitions into elements and subdomains. There are no prob-
lems with the classical coarse space if the plastically activated zone does not
intersect the interface; see Table 1 for a decomposition in 2× 2 subdomains.
In this case each linearized system can be analyzed as in Gippert et al. [2012]
using a slab technique. However if the plastically activated zone intersects
the interface, the condition numbers and iteration counts increase consider-
ably; see Table 2 for the results with a decomposition in 15× 15 subdomains.
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n = H/h N = 1/H max. cond max. CG-It.

4 15 900837 371

6 15 > 106 > 1000

8 15 > 106 > 1000

Table 2 Problems with the Classical Coarse Space. FETI-DP maximal condition numbers
and iteration counts.

For the results with the adaptive coarse space described in Section 5, see

Fig. 2 Plastically activated zone in the last timestep. Decomposition into 2 × 2 sub-
domains. The plastically activated zones stay completely inside of subdomains (left).
Decomposition into 15 × 15 subdomains. The plastically activated zones intersect the
interface (right).

Table 3. The eigenpairs were computed using the MATLAB built-in function
’eig’. The complexity thus is cubic with respect to the length of the subdo-
main edges. For constant H/h the length of the subdomain edges is constant.
Moreover, the global number of subdomain edges, and thus also the number
of eigenvalue problems, grows linearly with the number of subdomains. The
solution of the eigenvalue problems can, of course, be performed in parallel.
The condition numbers and iteration counts decrease for the cost of a few
more primal constraints in the last time steps. The tolerance is currently
determined heuristically; see Table 3.
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