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Abstract A new nonlinear version of the well-known FETI-DP method
(Finite Element Tearing and Interconnecting Dual-Primal) is introduced. In
this method, the nonlinear problem is decomposed before linearization. Non-
linear approaches to domain decomposition can be viewed as a strategy to
localize computational work for the efficient use with future extreme-scale su-
percomputers. As opposed to known nonlinear FETI-DP algorithms, in the
new method the coarse solver can be replaced by a preconditioner, i.e., the
coarse solve can be inexact. It is expected that the new method can show
a superior parallel scalability if the number of subdomains is large. If the
coarse solver is exact and the method is applied to linear problems then the
method is equivalent to the standard FETI-DP method. Numerical results
for up to 32768 cores are presented using cycles of an algebraic multigrid for
the coarse problem of the new method.
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1 Introduction

We present a new nonoverlapping, nonlinear domain decomposition method
with an inexact solution of the coarse problem. The method can be seen as
an inexact reduced version of a recent nonlinear FETI-DP method [27].

In this method, the nonlinear problem is decomposed before linearization.
This is opposed to standard Newton-Krylov-Domain-Decomposition methods
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where the decomposition is performed after linearization. Nonlinear FETI-
DP methods were introduced in [26, 27] as nonlinear versions of the well
known family of FETI-DP domain decomposition methods.

In domain decomposition methods of the FETI-DP [17, 16, 31, 32, 29, 33]
and BDDC type [13, 9, 35, 34, 36] the coarse spaces are constructed from
partial assembly of the finite elements. This has facilitated the extension of
the scalability of these methods, see, e.g., [44, 37, 28, 30, 43, 41]. Inexact
FETI-DP methods were introduced in [28] and their parallel scalability has
been demonstrated in [31, 40].

Nonlinear approaches to domain decomposition are not new but have at-
tracted recent interest as a strategy to localize computational work. Reduc-
tion of communication and synchronization is expected to be crucial to obtain
good performance on future supercomputers.

The nonlinear, overlapping ASPIN (Additive Schwarz Preconditioned In-
exact Newton) approach was introduced in Cai and Keyes [6]. See also
[6, 25, 7, 24] and Groß and Krause [22, 21]. Nonlinear domain decomposi-
tion as a coupling method has been used, e.g., in fluid-structure interaction;
see Deparis et al. [12, 11], Deparis [10], or Fernandez et al. [18]; it has also
been used for the coupling of multiphase flow, see, e.g., Ganis et al. [20, 19].
Nonlinear FETI-1 methods were introduced in Pebrel at al. [39], nonlinear
Neumann-Neumann methods, as a scalable solver approach, in Bordeu et
al. [4]. Nonlinear Schwarz methods as a solver, i.e., not as a preconditioner,
have already been considered much earlier, see, e.g., [14, 5]. The solution of
local nonlinear problems can also be embedded into standard methods and
has been denoted nonlinear localization; see Cresta et al. [8].

2 Nonlinear FETI-DP formulation

Let Ωi, i = 1, . . . , N , be a decomposition of the domain Ω ⊂ Rd, d = 2, 3, into
nonoverlapping subdomains. Each subdomain is a union of finite elements.
We denote the associated local finite element spaces by Wi and the product
space by W = W1 × . . .×WN . We consider the minimization of a nonlinear
energy J : V h → R,

J(u) =
∑N

i=1 Ji(ui), (1)

where the Ji : Wi → R, i = 1, . . . , N are local energy functionals on the sub-
domains Ωi. For standard problems, such as nonlinear elasticity, discretized
by finite elements the global energy can be written as a sum of the local
nonlinear energies on the nonoverlapping subdomains; for details, see [27].

Let φi,j , i = 1, . . . , N, j = 1, . . . , Ni the nodal finite element basis func-
tions for the local finite element space Wi. We write J ′

i(ui)(φi,j) in the form

J ′
i(ui)(φi,j) = (Ki(ui)− fi)j
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where Ki(ui) depends on ui and fi is independent of ui.
Let us define the nonlinear, discrete block operator K(u) and the corre-

sponding block vectors u and f , i.e.,

K(u) :=

 K1(u1)
...

KN (uN )

 , f :=

 f1
...
fN

 , and u :=

 u1

...
uN

 . (2)

We then define the nonlinear, partially assembled operator K̃(ũ) :=
RT

ΠK(RΠ ũ),and the corresponding partially assembled right hand side f̃ :=
RT

Πf . Here we use the FETI-DP partial assembly operator RT
Π that is also

used to define the coarse problem of standard (linear) FETI-DP methods; see,
e.g., [29, 42] for the notation. Let B be the standard FETI-DP jump operator,
we can then introduce the nonlinear FETI-DP master system [26, 27]

K̃(ũ) +BTλ− f̃ = 0
Bũ = 0.

(3)

The nonlinear FETI-DP methods Nonlinear-FETI-DP-1 (NL-1) and Nonlinear-
FETI-DP-2 (NL-2), see [26, 27], are also based on the master system (3).

We assume that, as a result of a sufficient number of primal constraints,
the operator K̃ is continuously differentiable and locally invertible. We use
Newton’s method applied to (3) to obtain fast local convergence and a line
search as globalization strategy.

3 An Inexact Reduced Nonlinear FETI-DP Method

Newton’s method applied to (3) results in the linearized system[
DK̃(ũ) BT

B 0

] [
∆ũ
∆λ

]
=

[
K̃(ũ) +BTλ− f̃

Bũ

]
. (4)

Following the standard FETI-DP approach, we partition ∆ũ into the pri-
mal variables ∆ũΠ and the dual variables ∆ũB , i.e., ∆ũT =

[
∆uT

B ∆ũT
Π

]
.

We then obtain from (4) the system (DK̃(ũ))BB (DK̃(ũ))TΠB BT
B

(DK̃(ũ))ΠB (DK̃(ũ))ΠΠ 0
BB 0 0

∆uB

∆ũΠ

∆λ

 =

 (K̃(ũ))B +BT
Bλ− fB

(K̃(ũ))Π − f̃Π
BBuB

 .

(5)

Assuming enough primal constraints such that (DK̃(ũ))BB is invertible, we
then eliminate of uB and obtain a reduced system
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S̃ΠΠ –(DK̃(ũ))ΠB(DK̃(ũ))−1

BBB
T
B

–BB(DK̃(ũ))−1
BB(DK̃(ũ))TΠB –BB(DK̃(ũ))−1

BBB
T
B

][
∆ũΠ

∆λ

]

=

[
(K̃(ũ))Π − f̃Π − (DK̃(ũ)ΠB(DK̃(ũ))−1

BB

(
(K̃(ũ))B +BT

Bλ− fB
)

BBuB −BB(DK̃(ũ))−1
BB

(
(K̃(ũ))B +BT

Bλ− fB
) ] (6)

which we write as Arxr = Fr using the same notation as in [28] for linear
problems. The Schur complement

S̃ΠΠ = (DK̃(ũ))ΠΠ − (DK̃(ũ))ΠB(DK̃(ũ))−1
BB(DK̃(ũ))TΠB (7)

is the coarse problem of the FETI-DP method. In this paper, we will apply
a preconditioned Krylov method to the block system (6), using the block-
triangular preconditioner

B̂−1
r =

[
Ŝ−1
ΠΠ 0

−M−1BB(DK̃(ũ)−1
BB(DK̃(ũ))TΠBŜ

−1
ΠΠ −M−1

]
(8)

cf. [28, 31], where the irFETI-DP method (inexact reduced FETI-DP) for
linear problems was introduced.

Here, M−1 is one of the standard FETI-DP preconditioners. In this paper,
we always use the Dirichlet preconditioner [42]. Moreover, Ŝ−1

ΠΠ is assumed

to be a good preconditioner for the coarse problem S̃ΠΠ . Since the precondi-
tioner (8) is unsymmetric we have to use a Krylov space method suitable for
unsymmetric systems. In this paper we will use GMRES. The use of conjugate
gradients requires a symmetric reformulation.

In this nonlinear FETI-DP method the continuity of the solution is, in
general, not reached until convergence of the Newton method. This is differ-
ent from FETI-DP methods applied after Newton linearization where each
Newton iterate is continuous. This method is thus not identical to a standard
Newton-Krylov FETI-DP approach.

Note that the elimination of ũΠ from (6) leads to the Nonlinear-FETI-
DP-1 (NL1) method FNL1∆λ = d, introduced in [26, 27]. But this requires

an exact solver for S̃ΠΠ .

4 Initial Values for the Nonlinear FETI-DP Method

The convergence of Newton-type methods depends on a good initial value.
We are interested to find a suitable initial value ũ(0) for the Newton iteration
presented in Section 3. This initial value has to be continuous in all primal

variables ũ
(0)
Π but may be discontinuous in the dual variables u

(0)
B . Of course,
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it should provide a good local approximation of the problem. We can obtain
such an initial value ũ(0) from solving the nonlinear problem

K̃(ũ(0)) = f̃ −BTλ(0) (9)

by some Newton type iteration for some given initial value λ(0). In this paper
we set λ(0) = 0. The solution of (9) requires the solution of local nonlinear
subdomain problems which are only coupled in the primal unknowns. This
step thus requires only communication in the primal variables and is other-
wise completely parallel. It may be seen as a nonlinear localization step.

Linearization of (9) results in[
(DK̃(ũ))BB (DK̃(ũ))TΠB

(DK̃(ũ))ΠB (DK̃(ũ))ΠΠ

][
uB

ũΠ

]
=

[
(K̃(ũ))B +BT

Bλ− fB
(DK̃(ũ))Π − f̃Π

]
.

A block elimination of uB yields the symmetric system

S̃ΠΠ ũ = d̃Π (10)

where S̃ΠΠ is defined as in (7). We solve (10) by a Krylov method using the

preconditioner Ŝ−1
ΠΠ ; see (8).

N Krylov- Factor. max. max. Krylov- Runtime
(=Cores) Solver It. cond. It. Time

Newton-Krylov FETI-DP 11 1 7.3 11 .74s 5.3s
16 Newton-Krylov irFETI-DP 11 1 7.3 11 .91s 5.5s

irNonlinear-FETI-DP-1 11 1 7.3 11 .92s 5.4s

Newton-Krylov FETI-DP 22 1 8.1 22 1.5s 6.3s

64 Newton-Krylov irFETI-DP 22 1 8.0 22 2.0s 6.7s
irNonlinear-FETI-DP-1 21 1 8.2 21 2.1s 6.9s

Newton-Krylov FETI-DP 32 1 8.3 32 2.3s 7.4s
256 Newton-Krylov irFETI-DP 30 1 8.1 30 3.2s 8.3s

irNonlinear-FETI-DP-1 30 1 8.3 30 4.7s 9.9s

Newton-Krylov FETI-DP 32 1 8.4 32 2.5s 8.8s

1024 Newton-Krylov irFETI-DP 30 1 8.3 30 4.2s 10.8s
irNonlinear-FETI-DP-1 28 1 8.4 28 4.3s 11.0s

Table 1 Sanity check (irNonlinear-FETI-DP-1); Cray XT6: H/h = 256, standard linear
Laplace, Alg. A.

5 Numerical Results

In this section, we compare the standard Newton-Krylov approach, using ei-
ther the standard FETI-DP method or the irFETI-DP [28, 31] method as
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NK-irFETI-DP irNL-FETI-DP-1
N (Cores) Runtime Krylov-It. Krylov-Time Runtime Krylov-It. Krylov-Time

64 (1) 92.3s 92 23.6s 90.5s 19 5.5s

256 (4) 126.5s 88 31.4s 107.0s 20 7.2s
1024 (16) 91.2s 68 27.9s 97.4s 20 8.2s
4096 (64) 111.8s 67 30.2s 100.9s 20 9.1s

16 384 (256) 113.7s 67 28.5s 102.5s 20 8.5s
65 536 (1024) 130.9s 65 32.0s 110.5s 20 9.9s

Table 2 Comparison a standard Newton-Krylov irFETI-DP approach with the nonlinear

method; Cray XT6: H/h = 80, ∆+ 4∆p, p = 4, Alg. A.

a solver, and the new nonlinear domain decomposition approach, i.e., the
irNonlinear-FETI-DP-1 approach. We have implemented the algorithm pre-

Inexact-Reduced-Nonlinear-FETI-DP (irNL-FETI-DP-1)

N (=Cores) Step Time Krylov-It.

16 Newton Init 1: 5.2s 0
Newton Init 2: 5.2s 0
Newton Init 3: 5.2s 0

Newton Init 4: 5.2s 0
Newton Full 1: 7.3s 9

64 Newton Init 1: 5.3s 0
Newton Init 2: 5.2s 0
Newton Init 3: 5.2s 0

Newton Init 4: 5.2s 0
Newton Full 1: 8.2s 17

256 Newton Init 1: 5.4s 0
Newton Init 2: 5.4s 0

Newton Init 3: 5.4s 0
Newton Init 4: 5.4s 0
Newton Full 1: 9.5s 21

1 024 Newton Init 1: 5.8s 0
Newton Init 2: 5.9s 0

Newton Init 3: 5.8s 0
Newton Init 4: 5.9s 0
Newton Full 1: 10.4s 20

4 096 Newton Init 1: 7.6s 0

Newton Init 2: 7.5s 0
Newton Init 3: 7.5s 0
Newton Init 4: 7.5s 0
Newton Full 1: 13.1s 20

Table 3 irNonlinear-FETI-DP-1 on the MIRA Supercomputer (BG/P) Argonne National
Laboratory; ∆ + 4∆p, p = 4, H/h = 128. Alg. A.; joint work with B. Smith and S.

Balay (Argonne National Laboratory); uses only 4 out of 16 BG/Q cores. “Newton
Init” refers to a Newton step for solving (9) whereas “Newton Full” refers to a Newton
step for solving (3). A single full Newton step is sufficient for this problem after four steps
to compute the initial value.
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Inexact-Reduced-Nonlinear-FETI-DP (irNL-FETI-DP-1)

Nx x Ny = N Krylov- Newton steps Krylov-
(=Cores) d.o.f. It. Init / Full Time Runtime eff.

32 9 443 329 26 8 / 1 4.19s 112.5s 100%
128 37 761 025 31 8 / 1 5.07s 117.8s 96%

512 151 019 521 33 8 / 1 5.49s 119.1s 95%
2 048 604 028 929 33 8 / 1 5.65s 119.1s 95%
8 192 2 416 017 409 34 8 / 1 6.01s 127.9s 88%

32 768 9 663 873 025 34 8 / 1 9.13s 151.4s 74%

Table 4 irNonlinear-FETI-DP-1 on the SuperMUC supercomputer at Leibniz-
Rechenzentrum in Munich; ∆ + 4∆p, p = 4, Hx/hx = 768, Hy/hy = 384; the algorithm

uses all 16 cores of the node; “Newton Init” refers to a Newton step for solving (9) whereas
“Newton Full” refers to a Newton step for solving (3).

irNL-FETI-DP-1 for Hyperelasticity

Problem Total Total
Cores Size Time Effic.

64 4M 127s 100%

256 16M 139s 91%
1024 67M 128s 99%
4096 268M 142s 89%

Table 5 irNonlinear-FETI-DP-1 on the SuperMUC supercomputer at Leibniz-
Rechenzentrum (LRZ) in Munich; Neo-Hooke material; E = 210 000 in off-centered circular

inclusions in the subdomains and E = 210 in the surrounding matrix material; Poisson
ratio ν = 0.3;a fixed displacement of 1% in x-direction is prescribed on the boundary.

sented here using PETSc [2, 1, 3]. For all inexact algorithms, the precondi-

tioner ŜΠΠ for the coarse problem S̃ΠΠ is formed by applying one iteration
of BoomerAMG [23]. BoomerAMG is part of the Hypre library [15]. In all
experiments we have used GMRES as a Krylov method. The Newton method
is always combined with a line search using the strong Wolfe conditions; see
[38]. For a minimization problem minx∈RnJ(x) and a descent direction ∆x
the strong Wolfe conditions read J(x + t∆x) ≤ J(x) + c1t∇TJ(x)∆x and
|∇TJ(x + t∆x)∆x| ≤ c2|∇TJ(x)∆x| with constants 0 < c1 < c2 < 1, and
where t is the step length.

First, we apply all algorithms to a standard linear diffusion problem, see
Table 1, as a sanity check. For this linear problem, the initialization phase, see
Section 4, is omitted as it is not necessary. The test runs on 16 to 1 024 cores of
a Cray XT6 show almost identical numerical and parallel performance of the
different algorithms and implementations. This is expected since, for a linear
problem, the Newton-Krylov-irFETI-DP method and the irNonlinear-FETI-
DP-1 method are equivalent. We do see some increase in the total runtime,
mainly due to an increase in the Krylov iteration time. This increase is due
to an inefficient parallel distribution of the coarse problem. A redistribution
would be necessary on this architecture but was not performed here. In Ta-
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ble 2, we then perform a weak scaling test for a nonlinear problem on the
Cray XT6 at Universität Duisburg-Essen using up to 1024 cores. We have
considered a nonlinear diffusion problem ∆u + 4∆pu = f for p = 4, where
∆ is the standard Laplacian and ∆p is the p-Laplacian. The step length is
chosen according to a Wolfe rule. We have considered subdomains of quite
small size, i.e., H/h = 80, but up to 65536 subdomains.

We can see that the new method is competetive and significantly reduces
the number of Krylov iterations. As a result, the inexact reduced Nonlinear-
FETI-DP-1 (irNL-1) method is slightly faster.

We then have performed a weak scalability test using 16 to 4096 processor
cores of the MIRA supercomputer at the Argonne National Laboratory, see
Table 3. We can see that, for this problem, up to four Newton steps are
performed in the initialization phase, i.e., to solve (9). No Krylov iteration
is necessary in this phase. A single Newton iteration, using between 9 and
21 Krylov iterations, is sufficient to solve the nonlinear problem (3) to the
desired relative tolerance of 1e-9. The parallel efficiency drops to 56% from
16 to 4096 processor cores. This was an unexpected result on the BG/Q
architecture. Indeed, a performance bug in a parallel norm computation that
limited scalability was identified as a result of these experiments.

After eliminating the performance bug we finally have performed a similar
weak scalability test using 32 to 32768 processor cores of the SuperMUC
supercomputer at the Leibniz-Rechenzentrum in Munich. The results are
presented in Table 4. To solve this problem eight Newton steps are performed
in the initialization phase and then a single full Newton step is sufficient to
reach a tolerance of 1e-10. Overall, the algorithm needs only between 26 and
34 Krylov iterations. The parallel scalability seems satisfactory and we reach
an efficiency of 74% using 32768 cores compared to the baseline of 32 cores.
Let us remark, that a non negligable amount of time is spent in the MPI
initialization called by PETSc in the first Newton step and we expect to
obtain even better results in the future.

Finally, in Table 5, we report on weak scalability for a problem of nonlinear
hyperelasticity on the SuperMUC supercomputer.

6 Summary

The new nonlinear FETI-DP method combines the approaches from [27]
and [28] and thus can be denoted inexact reduced Nonlinear-FETI-DP-1
(irNL1). An important building block of this method is the solution of nonlin-
ear problems on the subdomains. Algorithmically, the same building blocks
as standard FETI-DP methods are used. If exact solvers are used as building
blocks the new method shows the same performance as the Nonlinear-FETI-
DP-1 method [27]. If an efficient preconditioner is used for the coarse problem
then the scalability can be extended substantially.
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Nonlinear localization strategies for domain decomposition methods: ap-
plication to post-buckling analyses. Comput. Methods Appl. Mech. En-
grg., 196(8):1436–1446, 2007.

[9] Jean-Michel Cros. A preconditioner for the Schur complement domain
decomposition method. In O. Widlund I. Herrera, D. Keyes and R. Yates,
editors, Domain Decomposition Methods in Science and Engineering,
pages 373–380. National Autonomous University of Mexico (UNAM),
Mexico City, Mexico, ISBN 970-32-0859-2, 2003. Proc. 14th Int. Conf.
Domain Decomposition Methods; http://www.ddm.org/DD14.

[10] Simone Deparis. Numerical Analysis of Axisymmetric Flows and Meth-
ods for Fluid-Structure Interaction Arising in Blood Flow Simulation.
PhD thesis, EPFL, 2004.

[11] Simone Deparis, Marco Discacciati, Gilles Fourestey, and Alfio Quar-
teroni. Heterogeneus Domain Decomposition Methods for Fluid-
Structure Interaction Problems, volume 55 of Domain Decomposition
Methods in Science and Engineering XVI. Springer Berlin Heidelberg,
2005.

[12] Simone Deparis, Marco Discacciati, Gilles Fourestey, and Alfio Quar-
teroni. Fluid-structure algorithms based on Steklov-Poincaré operators.
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