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A comparison study of different decoupled schemes for the evolutionary
Stokes/Darcy problem is carried out. Stability and error estimates of a mass
conservative multiple-time-step algorithm are provided under a time step re-
striction which depends on the physical parameters of the flow system and
the ratio between the time steps applied in the free flow and porous medium
domains. Numerical results are presented and the advantage of multirate time
integration is demonstrated.

1 Introduction

Modeling coupled porous medium and free flow systems is of interest for
a wide spectrum of industrial and environmental applications. Physical pro-
cesses in these systems evolve on different scales in space and time that require
different models for each flow domain and an accurate treatment of transi-
tions between them at the interface. In the free flow region, the Navier–Stokes
or Stokes equations are typically applied to describe momentum conservation
while Darcy’s law is used in the porous medium. To couple these flow models,
which are of different orders, the Beavers–Joseph–Saffman condition [1, 11] is
usually applied together with restrictions that arise due to mass conservation
and balance of normal forces across the interface.

Over the last decade, work has been carried out mainly for stationary flow
systems aimed at providing rigorous problem formulations and numerical
methods for solving such coupled flow problems [3–5, 9]. Recent advances in
coupling techniques for nonstationary flow problems are presented in [2, 6–8],
where the same time step is used in both domains.
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Since the free flow velocity is usually much higher than the velocity of
fluids through porous media, it is reasonable to apply a multiple-time-step
technique: to compute fast/slow solutions using a small/large time step. First
results on multirate time integration for the coupled Stokes/Darcy problem
are presented in [10, 12]. Multiple-time-stepping pays off for single-fluid-phase
systems when the free flow domain is smaller than the porous medium (mod-
elling karst aquifers, flows in fractured porous media, flows in blood vessels
and biological tissues) and it is especially efficient when a second fluid phase is
present in the subsurface and the porous medium model is nonlinear and ex-
pensive (overland flow interactions with unsaturated groundwater aquifers).

The overall goal of this work is to investigate different multiple-time-step
techniques for solving coupled free flow and porous medium flow problems.

2 Flow System Description

The system of interest includes a free flow region Ωff , containing a single
fluid phase, and a porous medium layer Ωpm, which contains a fluid and a
solid phase (Fig. 1, left). At the macroscale, the system is described as two
different continuum flow domains separated by the interface Γ (Fig. 1, right).

porous medium

free flow

−solid phase

−fluid phase

porous mediumΩpm

free flowΩff

fluid-porous interfaceΓ

n

Fig. 1 Schematic representation of the coupled free flow and porous medium flow system.

We deal with isothermal processes and consider the same incompressible
fluid in both flow domains. The mass conservation equation reads

∇·v = 0 in Ωff × (0, T ]. (1)

Considering laminar flows and neglecting the inertia term, the momentum
balance in the free flow domain reduces to the Stokes equation

ρ
∂v

∂t
−∇·T(v, p)− ρg = 0 in Ωff × (0, T ], (2)

where ρ is the density, v is the velocity, p is the pressure, g is the gravitational
acceleration, T(v, p) = 2µD (v) − pI is the stress tensor, µ is the viscosity,

D (v) = 1
2

(
∇v + (∇v)

T
)

is the strain tensor, and I is the identity tensor.

Fluid flows through the porous medium are usually described by Darcy’s
law v = −µ−1K (∇p− ρg), which, together with the mass conservation equa-
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tion for compressible soils, yields the porous medium flow formulation

β
∂p

∂t
−∇·

(
K

µ
(∇p− ρg)

)
= 0 in Ωpm × (0, T ], (3)

where K is the intrinsic permeability tensor and β is the soil compressibility.
The mass conservation across the interface reads

vff ·n = vpm·n on Γ × (0, T ], (4)

and the balance of normal forces is given by

−n·T (vff , pff) ·n = ppm on Γ × (0, T ]. (5)

The Beavers–Joseph–Saffman interface condition can be written as follows

vff ·τ i + 2α−1
BJ

√
Kn·D (vff) ·τ i = 0, i = 1, . . . , d− 1 on Γ × (0, T ], (6)

where n and τ are the unit normal and tangential vectors to the interface
(Fig. 1), αBJ > 0 is the Beavers–Joseph parameter, and d is the number of
space dimensions.

Problem (1)–(6) is subject to initial and boundary conditions at the ex-
ternal boundary of the coupled domain.

3 Decoupled Schemes

Multiphysics problems can be solved using the monolithic approach when
the systems of linear algebraical equations resulting from the discretization
of two models are assembled together with the interface conditions into one
matrix, or applying partitioning techniques when each subdomain is treated
separately.
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Fig. 2 Stokes–Darcy (left) and Darcy–Stokes (right) decoupled multistep schemes.

For nonstationary problems where the processes run on different time
scales, different time steps can be applied in each subdomain. Typically, fluid
velocity in the free flow domain is much higher than through the porous
medium, therefore it is reasonable to compute free flow solutions on a fine
time mesh and porous medium solutions on a coarse time mesh. Different
decoupled schemes can be developed: first the free flow problem is solved and
then the porous medium one (Fig. 2, left), or vice versa (Fig. 2, right).
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Algorithm 1 (Stokes–Darcy)
for k = 0 to M − 1 do

for m = mk to mk+1 − 1 do

ρ
vm+1
h − vm

h

∆t
+ Aff

(
vm+1
h , pm+1

h

)
+ Affpm

(
vm+1
h , pm+1

h , ϕ
mk
h

)
= fm+1

ff

end for

β
ϕ
mk+1

h − ϕ
mk
h

∆T
+ Apm

(
ϕ
mk+1

h

)
+ Apmff

(
v
mk+1

h , ϕ
mk+1

h

)
= f

mk+1
pm

end for

Algorithm 2 (Darcy–Stokes)
for k = 0 to M − 1 do

β
ϕ
mk+1

h − ϕ
mk
h

∆T
+ Apm

(
ϕ
mk+1

h

)
+ Apmff

(
v
mk
h , ϕ

mk+1

h

)
= f

mk+1
pm

for m = mk to mk+1 − 1 do

ρ
vm+1
h − vm

h

∆t
+ Aff

(
vm+1
h , pm+1

h

)
+ Affpm

(
vm+1
h , pm+1

h , ϕ
mk+1

h

)
= fm+1

ff

end for

end for

Algorithm 3 (Stokes–Darcy, averaged velocity [12])
for k = 0 to M − 1 do

for m = mk to mk+1 − 1 do

ρ
vm+1
h − vm

h

∆t
+ Aff

(
vm+1
h , pm+1

h

)
+ Affpm

(
vm+1
h , pm+1

h , ϕ
mk
h

)
= fm+1

ff

end for

β
ϕ
mk+1

h − ϕ
mk
h

∆T
+ Apm

(
ϕ
mk+1

h

)
+ Apmff

1

r

mk+1−1∑
m=mk

vm
h , ϕ

mk+1

h

 = f
mk+1
pm

end for

In Algorithms 1–3, Aff and Apm are the space discretization operators for
the free flow problem (1)–(2) and the porous medium problem (3), Affpm is
responsible for the coupling conditions (5)–(6), Apmff stands for the interface
condition (4), ϕ is the porous medium pressure, mk and m are indices for the
coarse and fine time grids, r is the ratio between the large and small time
steps ∆T = r∆t. In both domains, uniform rectangular meshes matching
at the interface are considered and second order finite volume schemes [13,
Chap. 4.4, 6.3] are applied. We will compare Algorithms 1–3 numerically and
provide stability and error estimates for the most accurate Algorithm 1.

4 Stability and Error Estimates

In this section, we provide the long time stability and the a priori error
estimates for the multiple-time-step scheme (Algorithm 1) in case of homo-
geneous Dirichlet boundary conditions. The proofs can be found in [10].
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Theorem 1 (Long time stability). Under the restriction

∆t ≤ min

{
kminρ

2µ(r − 1)2C2
,

2kminµβ

rC

}
, (7)

Algorithm 1 is stable for t ∈ [0,+∞) and the a priori estimate

ρ ‖vmM

h ‖2
L2(Ωff )

+ β ‖ϕmM

h ‖2
L2(Ωpm)

+ 2∆t

M−1∑
k=0

mk+1−1∑
m=mk

d−1∑
j=1

∫
Γ

αBJ√
K

(
vm+1
h ·τ j

)2
≤ ρ ‖v0‖2L2(Ωff )

+ β ‖ϕ0‖2L2(Ωpm) +
k2

min β

2C
‖∇ϕ0‖2L2(Ωpm)

+∆t
C2
v

2µ

M−1∑
k=0

mk+1−1∑
m=mk

∥∥fm+1
ff

∥∥2

L2(Ωff )
+∆T

C2
ϕµ

kmin

M−1∑
k=0

∥∥fmk+1
pm

∥∥2

L2(Ωpm)

is valid, where v0, ϕ0 are the initial data, kmin is the minimal permeability
and the constants C, C, Cv, Cϕ > 0 are independent of the solution and the
discretization parameters.

Theorem 2 (Convergence). Let condition (7) be satisfied, then the solu-
tion of Algorithm 1 converges to the exact solution of problem (1)-(6) and the

a priori error estimate ρ ‖emM
v ‖2L2(Ωff )

+ β
∥∥emM
ϕ

∥∥2

L2(Ωpm)
≤ C̃

(
|h|4 +∆T 2

)
holds true, where ev and eϕ are the errors of the discrete free flow velocity

and the porous medium pressure, and the constant C̃ > 0 does not depend on
the grid steps.

5 Numerical Experiments

Consider Ωff = [0, 1]× [1, 2], Ωpm = [0, 1]× [0, 1], Γ = (0, 1)×{1}, and choose
model parameters ρ = 1, µ = 1, β = 1, αBJ = 1, K = I, g = 0. The exact solu-
tion u(x, y, t) = − cos (πx) sin (πy) exp(t), v(x, y, t) = sin (πx) cos (πy) exp(t),

p(x, y, t) = y2

2 sin (πx) exp(t), ϕ(x, y, t) = y
2 sin (πx) exp(t) satisfies the inter-

face conditions (4)–(6).
Comparison of Algorithm 1, using the same time steps in both subdomains

and a larger time step in the porous medium, with the monolithic approach is
presented in Fig. 3. At each level of space grid refinement, the time step is re-
duced by the factor of four starting with ∆t = 10−2. The errors are defined as
εv = ‖v − vh‖L2(Ωff )

/ ‖v‖L2(Ωff )
, and εϕ = ‖ϕ− ϕh‖L2(Ωpm) / ‖ϕ‖L2(Ωpm).

Numerical results confirm second order convergence in space and first order
in time for all the schemes. The multistep algorithm is slightly less accurate
due to a larger time step applied in the porous medium domain.

Comparison of Algorithms 1–3 for the same parameters is presented in
Fig. 4. All methods demonstrate second order convergence in space and first
order in time. Algorithm 1 is more accurate than Algorithms 2–3.
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Fig. 3 Comparison of Algorithm 1 and the monolithic approach. Time step ratio 1 : r.
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Fig. 4 Comparison of Algorithms 1–3. Time step ratio 1 : 10.

We note that restriction (7) is fulfilled for this model problem. For realistic
applications this restriction is severe. However, numerical simulations show
that the multiple-time-step algorithm is stable and convergent even when this
restriction is not fulfilled [10, Sec. 6.2].

We also present numerical simulations for a realistic setup. Consider a
coupled domain of size 5m × 1.2m with the interface Γ = (0, 5m) × {1m}.
In the porous medium, there are two inclusions [0, 2m] × [0.4m, 0.8m] and
[2.5m, 3.5m]× [0.1m, 0.8m]. The fluid is water with density ρ = 103

[
kg/m3

]
and dynamic viscosity µ = 10−3 [Pa s]. The soil is isotropic with permeability
k = 10−8

[
m2
]

except for the inclusions, where k1 = 10−6
[
m2
]

and k2 =

10−10
[
m2
]

(Fig. 5, top), and compressibility β = 10−4 [1/Pa]. The Beavers–
Joseph coefficient is αBJ = 1. Gravitational effects are neglected.

Initial and boundary conditions are prescribed in Fig. 5 (top), where the in-
flow conditions in the free flow domain are defined as u =

(
2− 190(y − 1.1)2

)
×

(1− cos(πt/2)) [m/s], v = 0, the no-flow condition in the porous medium is
given by ∂p/∂x = 0, and the outflow conditions in the free flow region are
∂u/∂x = 0, ∂v/∂x = 0.

The following discretization parameters are used h = 10−2 [m], ∆t =
10−3 [s], and r = 10 except for the results presented in Fig. 6 (right), where
r is varying. Numerical simulation results for the pressure distribution in the
coupled domain at time t = 2.4 [s] are presented in Fig. 5 (bottom).
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Fig. 5 Initial and boundary conditions (top) and pressure (bottom) for the realistic setup.

The finite volume method on staggered grids, used to discretize the free
flow and the porous medium problems, is locally mass conservative. The
only place where the mass can be lost is the interface Γ . Algorithm 1 is
constructed in such a way that guarantees no mass loss across Γ . However,
Algorithms 2–3 are not mass conservative. The overall mass loss through the
interface is presented for all the algorithms in Fig. 6 (left). The ratio between
the time steps is r = 10. The mean mass loss Mi at each time step, where
i = 1, 2, 3, for Algorithms 1–3 are M1 = 3.5 · 10−14 [kg], M2 = 3.9 · 10−2 [kg],
and M3 = 2.1 · 10−2 [kg].
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Fig. 6 Overall mass loss through the interface for Algorithms 1–3 (left). CPU time reduc-

tion for Algorithm 1 at different time step ratios (right).

To demonstrate the advantage of the multirate time integration approach
we run simulations for T = 7 [s] and compare CPU times needed for compu-
tation of the coupled problem using different ratios between the time steps
applied in the free flow and porous medium domains (Fig. 6, right). For simu-
lations we use a direct sparse solver and reuse factorizations between different
time steps.

Many extensions to this work are possible: development of different time-
partitioning algorithms, using higher order schemes in time for the porous
medium, application of various space discretizations in both domains, con-
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sidering two fluid phases, and application of different flow models in the free
flow and porous medium domains.
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