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Abstract We generalize substructuring methods to problems for functions
v : Ω → M , where Ω is a domain in Rd and M is a Riemannian mani-
fold. Examples for such functions include configurations of liquid crystals,
ferromagnets, and deformations of Cosserat materials. We show that a sub-
structuring theory can be developed for such problems. While the theory
looks very similar to the linear theory on a formal level, the objects it deals
with are much more general. In particular, iterates of the algorithms are
elements of nonlinear Sobolev spaces, and test functions are replaced by sec-
tions in certain vector bundles. We derive various solution algorithms based
on preconditioned Richardson iterations for a nonlinear Steklov–Poincaré for-
mulation. Preconditioners appear as bundle homomorphisms. As a numerical
example we compute the deformation of a geometrically exact Cosserat shell
with a Neumann–Neumann algorithm.

1 Spaces of Manifold-Valued Functions

Let Ω be a domain in Rd, and M a smooth, connected, finite-dimensional
manifold with positive injectivity radius. We assume M to be equipped with
a metric g, which induces an exponential map exp : TM →M , where TM is
the tangent bundle of M [7].

In this article we consider spaces1 of functions v : Ω →M . We first define
functions of Sobolev smoothness.
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1 We use the word space in a topologist’s sense here, without implying the existence of
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Definition 1. Let ı : M → Rm be an isometric embedding for some m ∈ N,
and let k ∈ N0 and p ∈ N. Define

W k,p(Ω,M) :=
{
v ∈W k,p(Ω,Rm) : v(x) ∈ ı(M) a.e.

}
,

where W k,p(Ω,Rm) is the usual Sobolev space of m-component vector-valued
functions on Ω.
Note that W k,p(Ω,M) does not have a linear structure. By the Sobolev
embedding theorem, it is a Banach manifold if k > d/p [10].

To formulate variational problems in such spaces we need to construct
test functions. Unlike in linear spaces, test function spaces for a function
u : Ω →M depend on u.

Definition 2. Let u ∈W k,p(Ω,M). A vector field along u is a map η : Ω →
TM , such that η(x) ∈ Tu(x)M for almost all x ∈ Ω.

More abstractly, vector fields along u are sections in a certain vector bundle.
While the concept of a vector bundle is standard (see, e.g., [7]), we state it
here for completeness.

Definition 3. Let E and B be two differentiable manifolds, and π : E → B a
surjective continuous map. The triple (E, π,B) is called a (continuous) vector
bundle if each fiber Ex := π−1(x), x ∈ B has an n-dimensional real vector
space structure, and the following triviality condition holds: For each x ∈ B,
there exists a neighborhood U and a homeomorphism

ϕ : π−1(U)→ U × Rn

with the property that for every y ∈ U ⊂ B

ϕ|Ey : Ey → {y} × Rn

is a bijective linear map. Such a pair (ϕ,U) is called a bundle chart. A family
(ϕi, Ui) of bundle charts such that the Ui cover B is called a bundle atlas.

In other words, vector bundles are spaces that locally look like products U ×
Rn. We call E the total space, B the base space, and π the bundle projection
of the vector bundle. The prototypical vector bundle is the tangent bundle
(TM, π,M) of a smooth manifold M . In this case, the bundle projection π
maps tangent vectors to their base points.

Vector bundles allow to generalize the concept of a map between spaces.
A vector bundle section is an object s that locally is a map s|U : U → Rn.

Definition 4. Let (E, π,B) be a vector bundle. A (global) section of E is a
map s : B → E with π ◦ s = IdB .

In particular, a map w : Ω → Rn can be interpreted as a section in the trivial
bundle (Ω × Rn, π,Ω). A section in the tangent bundle TM of a smooth
manifold M is a vector field on M .
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Let now N be another smooth manifold, f : B → N a continuous map,
and (E, π,N) a vector bundle over N . We pull back the bundle via f , to
obtain a bundle f∗E over B, for which the fiber over x ∈ B is Ef(x), the fiber
over the image of x. The following formal definition is given in [6, Def. 2.5.3].

Definition 5. Let f : B → N be a continuous map, and (E, π,N) a vector
bundle over N . The pulled back bundle f∗E has as base space B, as total
space E1, which is the subspace of all pairs (b, x) ∈ B ×E with f(b) = π(x),
and as projection the map (b, x) 7→ b.

With these preliminaries we can interpret vector fields along a continuous
function as vector bundle sections. The proof of the following lemma follows
directly from the definitions.

Lemma 1. Let f : Ω → M be continuous. A vector field η in the sense of
Definition 2 is a section in the bundle f∗TM .

So far, we have not mentioned the regularity of sections of vector bundles.
The following definition is given in [7].

Definition 6. Let (E, π,B) be a vector bundle, and s : B → E a section of
E with compact support. We say that s is contained in the Sobolev space
W k,p(E), if for any bundle atlas with the property that on compact sets all
coordinate changes and all their derivatives are bounded, and for any bundle
chart ϕ : E|U → U ×Rn from such an atlas, we have that ϕ◦s|U is contained
in W k,p(U,Rn).

As a special case of this we can define vector fields of Sobolev smoothness
along a given continuous function f : Ω →M .

Definition 7. Let f : Ω → M be continuous, and η a vector field along f .
We say that η is of k, p-Sobolev smoothness, and we write η ∈ Ξk,pf , if it is a
k, p-section in the sense of Definition 6.

Finally, we need a trace theorem for vector fields along a function. We
restrict our attention to k = 1, p = 2. The following is a special case of a
result proved in [5]. We denote by D(Ω,E) the smooth sections in (E, π,Ω)
and by D(Ω,E|Γ ) the smooth sections of the bundle restriction on Γ .

Lemma 2. Let Ω have a C∞ boundary, and let (E, π,Ω) be a vector bundle
over Ω. Let Γ be a part of the boundary of Ω, and suppose it is a submanifold
of Ω. Then the pointwise restriction trΓ : D(Ω,E) → D(Γ,E|Γ ) extends to
a linear and bounded operator from W 1,2(E) onto W 1

2 ,2(E|Γ ), i.e.,

trΓ W 1,2(E) = W
1
2 ,2(E|Γ ).

Moreover, trΓ has a linear and bounded right inverse, an extension operator
ExΩ : W 1

2 ,2(E|Γ )→W 1,2(E).
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For p 6= 2, p ≥ 1 the trace operator still exists, but the traces are only
contained in certain spaces of Besov type [5]. Trace theorems for functions
in W 1,p(Ω,M) also exist (see, e.g., [8, Chap. 1.12]), but in the following we
only look at continuous functions anyway.

2 Substructuring Formulation of Variational Problems

We now consider variational problems in the space W 1,p(Ω,M). Let α be a
form on W 1,p(Ω,M) ∩ C(Ω,M), i.e., for each continuous u ∈ W 1,p(Ω,M),
α[u] is a linear map Ξ1,p

u → R. We look for zeros of such a form, subject
to Dirichlet boundary conditions on part of the boundary of Ω. Since for
that case we need the trace theorem (Lemma 2) we restrict ourselves to
p = 2 again. Let ΓD be a subset of positive d − 1-dimensional measure of
∂Ω. For a function u0 : ΓD →M sufficiently smooth define the space H1

D :=
{v ∈ W 1,2(Ω,M) ∩ C(Ω,M) : trΓD v = u0}, and for each u ∈ H1

D define
Ξ1,2
u,0 = {η ∈ Ξ1,2

u : trΓD η = 0}. We then look for a function u ∈ H1
D such

that
α[u](η) = 0 for all η ∈ Ξ1,2

u,0. (1)

Such problems occur, for example, as the optimality condition for minimiza-
tion problems for functionals J : W 1,p(Ω,M) → R. In that case, α[u] is the
differential of J at u.

The weak problem (1) can be written as a coupled problem, consisting
of two subdomain problems and suitable coupling conditions. This is well-
known for linear problems in linear spaces [11, Chap. 1.2]. We show that the
argument used there also holds for nonlinear function spaces.

Assume that Ω is partitioned in two nonoverlapping subdomains Ω1 and
Ω2, and that the interface Γ := Ω1 ∩ Ω2 is a d − 1-dimensional Lipschitz
manifold. We note the following technical results, which follow directly from
the corresponding results for scalar-valued Sobolev spaces and Definition 1
(see also [8, Thm. 1.12.3]).

Lemma 3. 1. If u ∈W 1,p(Ω,M), then u|Ωi ∈W 1,p(Ωi,M) for i = 1, 2.
2. Let ui ∈W 1,p(Ωi,M) for i = 1, 2 and trΓ u1 = trΓ u2. Then the function
u : Ω →M defined by

u(x) :=
{
u1(x) if x ∈ Ω1

u2(x) if x ∈ Ω2

is contained in W 1,p(Ω,M).

Suppose that α is a linear form on W 1,p(Ω,M). We assume that α is
separable in the sense that there are linear forms αi on W 1,p(Ωi,M), i = 1, 2,
such that
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α[u](η) =
2∑
i=1

αi[u|Ωi ](η|Ωi) for all u ∈W 1,p(Ω,M), η ∈ Ξ1,p
u . (2)

This holds in particular if α is defined as an integral over a local density.
For a formal statement of our substructuring result we need the following

spaces.

Definition 8. Let u0 : ΓD →M be a function of prescribed Dirichlet values,
of sufficient smoothness. For i = 1, 2 set

Hi :=
{
vi ∈W 1,2(Ωi,M) ∩ C(Ωi,M) : vi|ΓD∩∂Ωi = u0

}
.

For i = 1, 2 and each vi : Ωi →M continuous set

Vi,vi :=
{
ηi ∈ Ξ1,2

vi : ηi(x) = 0 ∈ Tvi(x)M for almost all x ∈ ΓD
}
,

V 0
i,vi

:=
{
ηi ∈ Ξ1,2

vi : ηi(x) = 0 ∈ Tvi(x)M for almost all x ∈ ΓD ∪ Γ
}
.

Also, we define the interface space

Λ := {w : Γ →M such that trΓ v = w for some v ∈ H1},

and the corresponding spaces of test functions on Γ

Ξ1/2
w := Ξ

1
2 ,2
w

for each continuous w ∈ Λ.

Note that the V 0
i,vi

and Ξ
1/2
w are linear spaces, whereas the Hi and Λ are

not. Unlike in the linear case, the test function spaces are replaced by entire
families of spaces, parametrized by functions vi ∈ Hi and w ∈ Λ, respectively.

Lemma 4. The weak problem (1) is equivalent to: Find ui ∈ Hi, i = 1, 2,
such that

αi[ui](ηi) = 0 ∀ ηi ∈ V 0
i,ui , i = 1, 2 (3)

trΓ u1 = trΓ u2 (4)

α1[u1](ExΩ1 µ) = −α2[u2](ExΩ2 µ) for all µ ∈ Ξ1/2
trΓ u1

, (5)

where ExΩi , i = 1, 2 is an extension operator from Ξ
1/2
trΓ u1

to Vi,ui .

Note that the existence of the extension operators ExΩi is ensured by
Lemma 2.

Proof. We follow the argument in [11, Chap. 1.2], and show first that the
substructuring formulation is a consequence of (1). Let u be a solution of (1).
Consequently, it is an element of W 1,2(Ω,M) ∩ C(Ω,M), and by Lemma 3,
the subdomain functions ui := u|Ωi , i = 1, 2 are in H1 and H2, respectively.
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Equation (4) follows because u is continuous. Also, (3) holds, because any
test function vi ∈ V 0

i,ui
can be extended by zero to a test function in Ξ1,2

u,0.
Finally, for every µ ∈ Ξ1/2

trΓ u1
define

Ex µ :=
{

ExΩ1 µ in Ω1,

ExΩ2 µ in Ω2,

and note that Ex µ ∈ Ξ1
u,0. Therefore, Ex µ is a valid test function for (1).

Together with the separability (2) of α we get

0 = α[u](Ex µ) = α1[u1](ExΩ1 µ) + α2[u2](ExΩ2 µ),

which is (5).

To show the other direction let ui, i = 1, 2, be a solution of (3)–(5), and
define

u :=
{
u1 in Ω1

u2 in Ω2.

Since u1 = u2 on Γ we can invoke Lemma 3 to obtain that u ∈W 1,2(Ω,M);
additionally, u is continuous.

Let η ∈ Ξ1,2
u be a test function at u. By Lemma 2 it has a trace µ := tr η

with µ ∈ Ξ1/2
trΓ u. Then (η|Ωi − ExΩi µ) ∈ V 0

i,ui
. With this we can compute

α[u](η) =
2∑
i=1

αi[ui](η|Ωi) (by separability (2))

=
2∑
i=1

[
αi[ui](η|Ωi − ExΩi µ︸ ︷︷ ︸

∈V 0
i,ui

) + αi[ui](ExΩi µ)
]

(by lin. of αi[ui](·))

=
2∑
i=1

αi[ui]([ExΩi µ) (by (3))

= 0 (by (5)).

Hence u solves (1).

3 Steklov–Poincaré Formulation

Following the standard substructuring approach we now write the coupled
problem (3)–(5) as a single equation on an interface space. In our setting this
interface space is the nonlinear space Λ.
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We first introduce the Steklov–Poincaré operators for the subdomain prob-
lems. For each subdomain, these map Dirichlet values on Γ to the Neumann
traces of the corresponding subdomain solutions on Γ . These Neumann traces
are sections in a certain dual bundle.
Definition 9. Let u : Ω →M be continuous. For any Sobolev space Ξk,pu of
sections in u∗TM we call (Ξk,pu )∗ its dual, i.e., the set of all linear functionals
L : Ξk,pu → R such that L(η) is finite for all η ∈ Ξk,pu .

We denote by (Ξk,p)∗ the disjoint union of all spaces (Ξk,pu )∗ for all con-
tinuous u. This concept allows to generalize the space (H 1

2 (Γ ))∗ used for the
Neumann traces of linear problems.
Definition 10. We call Si the Dirichlet–to–Neumann map associated to the
i-th subdomain. That is, for any λ ∈ Λ we set Siλ ∈ (Ξ1/2

λ )∗ to be such that

Siλ[µ] = αi[ui](ExΩi µ) for all µ ∈ Ξ1/2
λ , (6)

where ui fulfills trΓ ui = λ and solves

αi[ui](η) for all η ∈ V 0
i,ui .

Remark 1. We assume here for simplicity that the Si are single-valued, i.e.,
that for given Dirichlet data λ the corresponding subdomain problems have
unique solutions.

Using the Steklov–Poincaré operators we can write the coupled problem
(3)–(5) as a problem on the interface space alone.
Lemma 5. The coupled problem (3)–(5) is equivalent to the Steklov–Poincaré
equation

S1λ+ S2λ = 0. (7)

Note that S1λ and S2λ are from the same linear space (Ξ1/2
λ )∗. Hence the

addition is justified.
Proof. Let λ ∈ Λ. Then the subdomain solutions u1, u2 used in the definition
of S1 and S2 solve the subdomain problems (3) by construction. Also, since
they both assume the same value λ on Γ they are continuous on the interface.
Finally, inserting (6) into (7) yields (5). Conversely, if u1, u2 solve (3)–(5),
then λ := trΓ u1 = trΓ u2 solves (7).

4 Nonlinear Preconditioned Richardson Iteration

The natural algorithm for the Steklov–Poincaré interface equation (7) is the
preconditioned Richardson iteration. Depending on the preconditioner, vari-
ous different domain decomposition algorithms result, which we will describe
below.
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Let k ∈ N and λk ∈ Λ be an iterate of the interface variable. Following
Deparis et al. [3], we write one iteration of the preconditioned Richardson
iteration in three steps:

1. Compute residual σk ∈ (Ξ1/2
λk

)∗ by

σk = S1λ
k + S2λ

k.

2. Get correction vk ∈ Ξ1/2
λk

by preconditioning the negative residual

vk = P−1
λk

(−σk).

3. Do a damped geodesic update

λk+1 = expλk ωvk,

where ω ∈ (0,∞) is a parameter, and the map expλk is to be understood
pointwise.

The preconditioner P is a vector bundle morphism from Ξ1/2 to (Ξ1/2)∗,
that is, a mapping from Ξ1/2 to (Ξ1/2)∗ such that π(Pv) = πv for all
v ∈ Ξ1/2, and such that for each λ ∈ Λ the induced map from Ξ

1/2
λ to

(Ξ1/2
λ )∗ is linear. It maps infinitesimal corrections to generalized stresses. We

additionally require that each Pλk be invertible. Consequently, its inverse
P−1
λk

maps generalized stresses to corrections.
The update step 3 needs to use the exponential map to apply the correction

vk (which is a vector field along λk) to the current iterate λk. The correction
is multiplied with a positive damping factor ω. More generally, this factor
can be replaced by a linear map ωk from the tangent space Ξ1/2

λk
onto itself.

If M is a linear space the exponential map degenerates to the addition of its
argument to λk.

Remark 2. The two subdomain solves needed for Step 1 of the Richardson
iteration can be performed in parallel. Since Step 1 is by far the most costly
part this parallelization leads to considerable performance gains.

To construct preconditioners we introduce the derivatives of the Steklov–
Poincaré operators. For Si : Λ → (Ξ1/2)∗ we interpret the derivative at a
λ ∈ Λ as a linear map S′i(λ) from Ξ

1/2
λ to (Ξ1/2

λ )∗.

Remark 3. This interpretation is most easily understood if we assume for a
second that the space Λ is smooth enough to form a Banach manifold. We can
then write vector fields as elements of the tangent bundle TΛ. The Steklov–
Poincaré operator Si becomes a map Si : Λ → T ∗Λ, and its derivative at
λ ∈ Λ is the linear map S′i : TλΛ → TSiλT

∗
λΛ. Since T ∗λΛ is a linear space

we can identify TSiλT ∗λΛ with T ∗λΛ, and therefore interpret S′i(λ) as a linear
map from TλΛ to T ∗λΛ. This corresponds to a map from Ξ

1/2
λ to (Ξ1/2

λ )∗ if Λ
is not sufficiently smooth.
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We now describe various preconditioners and the algorithms that result
from them.

• Dirichlet–Neumann Preconditioner: The simplest choice for a precondi-
tioner is the inverse of the linearized Steklov–Poincaré operator of one of the
subproblems. We define the Dirichlet–Neumann preconditioner as

PDN,k := S′1[λk].

With this choice, the damped preconditioned Richardson iteration reads

λk+1 = expλk(ωP−1
DN,k(−σk)) = expλk

[
ω(S′1[λk])−1(−S1λ

k − S2λ
k)
]
.

Using instead the second subdomain for preconditioning we define the Neumann–
Dirichlet preconditioner

PND,k := S′2[λk].

• Neumann–Neumann Preconditioner: We can generalize the above construc-
tion by allowing arbitrary convex combinations of the Dirichlet–Neumann
and Neumann–Dirichlet preconditioners. Let γ1, γ2 be two non-negative real
numbers with γ1 + γ2 > 0. Then

P−1
NN,k := γ1(S′1[λk])−1 + γ2(S′2[λk])−1 (8)

is the Neumann–Neumann preconditioner. When M is a linear space and
the equation to be solved is linear, then the Richardson iteration together
with the preconditioner (8) reduces to the usual Neumann–Neumann iterative
scheme.
• Robin Preconditioner: Finally, we generalize the Robin–Robin method. Let
again γ1 and γ2 be two non-negative coefficients such that γ1 + γ2 > 0.
Further, let F be a vector bundle morphism from Ξ1/2 to (Ξ1/2)∗ that is
invertible on each fiber. For each λk ∈ Λ, Fλk is a linear map from Ξ

1/2
λk

to
(Ξ1/2

λk
)∗. We then define the Robin–Robin preconditioner

PRR,k := 1
γ1 + γ2

[
γ1Fλk + S′1(λk)

]
F−1
λk

[
γ2Fλk + S′2(λk)

]
.

For the linear finite-dimensional case, the identity map can be chosen for
F . In that case the equivalence of this preconditioner to the Robin–Robin
iterative method has been shown in [4].

5 Numerical Results

We demonstrate the performance of the Richardson iteration with a numer-
ical example. Consider a hyperelastic Cosserat shell. Configurations of such
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a shell are pairs of functions (ϕ,R) : Ω → R3 × SO(3), where Ω is a two-
dimensional domain, and SO(3) is the set of orthogonal 3×3-matrices R with
detR = 1. For x ∈ Ω we interpret ϕ(x) ∈ R3 as the position of a point of
the shell midsurface, and R3(x) ∈ R3 (the third column of R(x) ∈ SO(3))
as a transverse direction. The remaining two orthonormal vectors R1 and R2
describe an in-plane rotation (Figure 1). This choice of kinematics allows to
model size-effects and microstructure. We use a hyperelastic material with
the energy functional proposed by Neff in [9, Chap. 7]. For this energy, exis-
tence and partial regularity of minimizers have been shown [9], but no further
analytical results are available.

Fig. 1 Cosserat shell configurations consist of the deformation field ϕ of the mid-surface,
and an orientation field R which can be interpreted as a field of three orthogonal director
vectors.

As an example problem we use a rectangular strip of dimensions 10 mm×
1 mm. The thickness parameter is set to 0.05 mm. Both the displacement ϕ
and the orientation R are clamped at one of the short ends. At the other
short end we prescribe a time-dependent Dirichlet boundary condition to the
midsurface position ϕ and rotations R, which describes a uniform rotation
from 0 to 4π about the long central axis of the strip. The positions and
rotations at the long sides are left free. This makes the strip coil up. Note
that we need the hyperelastic shell energy with the nonlinear membrane
term proposed in Chapter 7 of [9] for this to work, because it is a finite
strain example. The resulting model is quasi-static, i.e., it does not contain
inertia terms. Time enters only through the time-dependence of the boundary
conditions, which is necessary to obtain the coiling behavior.

For the material parameters we choose the Lamé constants µ = 3.8462 ·
105 N/mm2, λ = 2.7149 · 105 N/mm2, and the Cosserat couple modulus µc =
0 N/mm2. The internal length scale is set to Lc = 0.1 mm, and the curvature
exponent is p = 1 (see [9] for details on these parameters).

We divide the domain into two subdomains of dimensions 5 mm × 1 mm,
and the time interval in 20 uniform time steps. For each time step we solve
the spatial problem with a nonlinear Richardson iteration and the Neumann–
Neumann preconditioner of Section 4, with γ1 = γ2 = 1

2 . The subdomain
problems are discretized using first-order geodesic finite elements [12] on a
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uniform grid with quadrilateral elements, and the resulting nonlinear alge-
braic minimization problems are solved using a Riemannian trust-region al-
gorithm [1, 12]. The linear preconditioner problems are solved using a CG
method. The code was implemented on top of the Dune libraries [2].

Fig. 2 Twisted elastic strip at rotation angles 0, 4
5π, 8

5π, 12
5 π, 16

5 π, and 4π

Figure 2 shows several snapshots from the evolution of the strip. One can
see how the strip coils up following the rotation prescribed to the boundary.
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Fig. 3 Left: Convergence rates as a function of time for the Richardson damping pa-
rameter ω = 0.1, and different grid resolutions. Right: Convergence rates averaged over
time, for several grid resolutions and values of ω

To assess the convergence speed of the substructuring method we monitor
the traces λk defined on the interface Γ = {5} × [0, 1]. We estimate the
convergence rate of the Neumann–Neumann solver at iteration k by ρk :=
‖vk‖/‖vk−1‖, where vk−1 and vk are two consecutive corrections produced
by the Richardson iteration. For the norm ‖·‖ we use the Sobolev norm
H1(Γ,R3×R4), using the canonical embedding of SO(3) into the quaternions
to embed tangent vectors of SO(3) into R4. This norm is well-defined for
discrete functions. We let the domain decomposition algorithm iterate until
the H1-norm of the correction drops below 10−3. The overall convergence
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rate for one time step is then determined by taking the geometric average
over the ρk.

We measure the rates as a function of the grid resolution and of the
Richardson damping parameter ω. One observes immediately that a rather
small value for ω is needed to make the algorithm converge. Figure 3, left,
shows the convergence rates for ω = 0.1 and four different grids as a function
of time. Grid resolutions range from 10 × 1 to 80 × 8, created by uniform
refinement. We see that the convergence rate is rather independent of the
time step and of the grid resolution, with the exception of the coarsest grid,
for which convergence rates ameliorate over time.

To get a better idea of the dependence of the convergence speed on the
damping parameter ω we therefore average the rates over time and plot the
results in Figure 3, right. We observe that the optimal ω decreases and the
the optimal convergence rate increases as the grid is refined. This matches
what is known for the linear case. A more detailed study of the behavior at
vanishing mesh sizes, along with a proof of convergence, however, has to be
left for future work.
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