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1 Introduction

Implicit integration methods based on collocation are attractive for a num-
ber of reasons, e.g. their ideal (for Gauss-Legendre nodes) or near ideal
(Gauss-Radau or Gauss-Lobatto nodes) order and stability properties. How-
ever, straightforward application of a collocation formula with M nodes to
an initial value problem with dimension d requires the solution of one large
Md×Md system of nonlinear equations.

Spectral deferred correction (SDC) methods, introduced by Dutt et al.
[2000], are an attractive approach for iteratively computing the solution to the
collocation problem using a low-order method (like implicit or IMEX Euler)
as a building block. Instead of solving one huge system of size Md ×Md,
SDC iteratively solves M smaller d× d systems to approximate the solution
of the full system (see also the discussion in Huang et al. [2006]). It has been
shown e.g. by Xia et al. [2007] that each iteration/sweep of SDC raises the
order by one, so that SDC with k iterations and a first-order base method is
of order k, up to the order of the underlying collocation formula. Therefore,
to achieve formal order p, SDC requires p/2 nodes and p iterations and thus
p2/2 solves of a d× d system (for Gauss-Legendre nodes).

Considering the number of solves required to achieve a certain order, one
might conclude that, notwithstanding the results presented here, SDC is less
efficient than e.g. diagonally implicit Runge Kutta (DIRK) methods, see
e.g. Alexander [1977], which only require p − 1 solves. However, the flexi-
bility of the choice of the base propagator in SDC and the very favorable
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stability properties make it an attractive method nevertheless. In partic-
ular, semi-implicit methods of high order can easily be constructed with
SDC which make it competitive for complex applications, see Minion [2003]
and Bourlioux et al. [2003]. Further extensions to SDC allow it to integrate
processes with different time scales, see Layton and Minion [2004], Bouzarth
and Minion [2010] efficiently; and the iterative nature of SDC also allows it to
be extended to a multigrid-like multi-level algorithm, where work is shifted
to coarser, computationally cheaper levels, see Speck et al. [2014b].

In the present paper, we introduce another strategy to improve the effi-
ciency of SDC, which is similar to ideas from Oosterlee and Washio [1996]
where a single V-cycle of a multigrid method is used as a preconditioner. We
show here that the iterative nature of SDC allows us to use incomplete solves
of the linear systems arising in each sweep. In the resulting inexact spectral
deferred corrections (ISDC), the linear problem in each Euler step is solved
only approximately using a small number (two in the examples presented
here) of multigrid V-cycles. It is numerically shown that this strategy results
in only a small increase of the number of required sweeps while reducing the
cost for each sweep. We demonstrate that ISDC can provide a significant
reduction of the overall number of multigrid V-cycles required to complete
an SDC time step.

2 Semi-implicit spectral deferred corrections

We consider an initial value problem in Picard form

u(t) = u0 +
∫ t

T0

f(u(s)) ds (1)

where t ∈ [T0, T ] and u, f(u) ∈ RN . Subdividing a time interval [Tn, Tn+1]
into M intermediate substeps Tn = t0 ≤ t1 < ... < tM ≤ Tn+1, the integrals
from tm to tm+1 can be approximated by

Im+1
m =

∫ tm+1

tm

f(u(s)) ds ≈ ∆t
M∑

j=0

sm,jf(uj) = Sm+1
m F (u) (2)

where um ≈ u(tm), m = 0, 1, ...,M , F (u) = (f(u1), ..., f(uM ))T , ∆t = Tn+1−
Tn, and sm,j are quadrature weights. The nodes tm correspond to quadrature
nodes of a spectral collocation rule like Gauss-Legendre or Gauss-Lobatto
quadrature rule. The basic implicit SDC update formula at node m + 1 in
iteration k + 1 can be written as

uk+1
m+1 = uk+1

m +∆tm
[
f(uk+1

m+1)− f(uk
m+1)

]
+ Sm+1

m F (uk), (3)
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where ∆tm = tm+1− tm, for m = 0, ...,M − 1. Alternatively, if f can be split
into a stiff part f I and a non-stiff part fE , a semi-implicit update is easily
constructed for SDC using

uk+1
m+1 = uk+1

m +∆tm
[
f I(uk+1

m+1)− f I(uk
m+1)

]
+∆tm

[
fE(uk+1

m )− fE(uk
m)
]

+ Sm+1
m F (uk). (4)

Here, only the f I -part is treated implicitly, while fE is explicit. We refer to
Minion [2003] for the details on semi-implicit spectral deferred corrections.

3 Inexact spectral deferred corrections

In the following, we consider the linearly implicit case f I(u) = Au, where
A is a discretization of the Laplacian operator. Here, spatial multigrid is a
natural choice for solving the implicit part in (4). As in Speck et al. [2014b], we
use a high-order compact finite difference stencil to discretize the Laplacian
(see e.g. Spotz and Carey [1996]). This results in a weighting matrix W for
the right-hand side of the implicit system and, with the notation f̃ I(u) =
Wf I(u), the semi-implicit SDC update (4) becomes

(W −∆tmA)uk+1
m+1 = Wuk+1

m +∆tmW
[
fE(uk+1

m )− fE(uk
m)
]

−∆tmf̃ I(uk
m+1) + Sm+1

m F̃ (uk), (5)

where f̃ = WfE + f̃ I and F̃ (uk) = (f̃(uk
1), ..., f̃(uk

M ))T . Thus, instead of
inverting the operator I−∆tmA in (4), the right-hand side of (4) is modified
by W and the operator W − ∆tmA needs to be inverted. We note that for
calculating the residual during the SDC iteration, the weighting matrix needs
to be inverted once per node, which can be done using multigrid as well.

For classical SDC, each computation of uk+1
m+1 includes a full inversion of

W − ∆tmA using e.g. a multigrid solver in space. For K iterations and M
nodes, the multigrid solver is executed K(M − 1) times, each time until a
predefined tolerance is reached. In order to reduce the overall number of
required multigrid V-cycles, ISDC replaces this full solve with a a small fixed
number L of V-cycles, leading to an accumulated number of K̃(M − 1)L
V-cycles in total. Naturally, the number of iterations in ISDC will be larger
than the number of SDC, that is K ≤ K̃. However, if K̃ is small enough so
that K̃(M − 1)L is below the total number of multigrid V-cycles required
for K(M − 1) full multigrid solves, inexact SDC will be more efficient than
classical SDC.

Convergence is monitored using the maximum norm of the SDC residual,
a discrete analogue of uk(t)−u0−

∫ t

T0
f(uk(s)) ds, that measures how well our

iterative solution satisfies the discrete collocation problem. See Speck et al.
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[2014b] for definition and details. In the tests below, sweeps are performed
until the SDC residual is below a set threshold.

4 Numerical tests

In order to illustrate the performance of ISDC, we consider two different nu-
merical examples, the 2D diffusion equation and 2D viscous Burgers’ equa-
tion. As described above, in both cases the diffusion term is discretized using
a 4th-order compact stencil with weighting matrix and a spatial mesh with
64 points. For Burgers’ equation, the advection term is is discretized using a
5th order WENO scheme.

4.1 Setups

The first test problem is the 2D heat equation on the unit square, namely

ut(x, t) = ν∆u(x, t), x ∈ Ω = (0, 1)2 (6)
u(x, 0) = sin(πx) sin(πy) (7)
u(x, t) = 0 on ∂Ω (8)

with x = (x, y). The exact solution is u(x, t) = exp(−2π2νt) sin(πx) sin(πy).
An implicit Euler is used here as base method in SDC.

The second test problem is the nonlinear viscous Burgers’ equation

ut(x, t) + u(x, t)ux(x, t) + u(x, t)uy(x, t) = ν∆u(x, t),x ∈ (−1, 1)2, (9)

u(x, 0) = exp
(
−x

2

σ2

)
, σ = 0.1 (10)

with periodic boundary conditions. Here, an IMEX Euler is used as base
method, i.e. the Laplacian is treated implicitly, while the advection term is
integrated explicitly.

In both examples the diffusion parameter ν controls the stiffness of the
term f I : for a given spatial resolution, the shifted Laplacian W − ν∆tA, and
therefore the performance of the multigrid solver, depends critically on ν. We
choose three different values of ν for each example to measure the impact of
stiffness on the performance of ISDC: ν = 1, 10, 100 for the heat equation
and ν = 0.1, 1, 10 for Burgers’ equation. For ISDC, each implicit solve is
approximated using L = 2 V-cycles. A single time-step of length ∆t = 0.001
is analyzed for a spatial discretization with ∆x = ∆y = 1/64 in both cases,
leading to CFL numbers for the diffusive term of approximately 4.1, 41 and
410 for the heat equation and 0.41, 4.1 and 41 for Burgers’ equation.
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ν M SDC ISDC savings

1 3 16(4) 12(4) 25%
5 23(3) 20(3) 13%
7 32(3) 28(3) 13%

10 3 36(5) 20(5) 44%
5 61(5) 40(5) 34%
7 79(4) 47(4) 41%

100 3 106(13) 52(13) 51%
5 150(10) 104(13) 31%

7 187(9) 167(14) 11%

(a) Heat equation

ν M SDC ISDC savings

10−1 3 21(8) 21(8) 0%
5 26(6) 26(6) 0%
7 33(5) 33(5) 0%

1.0 3 97(17) 66(17) 32%
5 140(17) 117(17) 16%
7 160(15) 143(15) 11%

10 3 207(25) 100(25) 52%
5 523(38) 298(38) 43%

7 902(50) 578(50) 36%

(b) Viscous Burgers’ equation

Table 1: Accumulated multigrid V-cycles for (a) the heat equation and (b) the viscous

Burgers’ equation with different values for the diffusion coefficients ν and the number of
quadrature nodes M . Cycles are accumulated over all sweeps required to reduce the SDC

or ISDC residual below 5 × 10−8. The number of deferred correction sweeps is shown in
parentheses. Saving indicates the amount of V-cycles saved by ISDC in percent of the

cycles required by SDC.

4.2 Results

Table 1 shows the total number of multigrid V-cycles for the heat equation
(left) and for Burgers’ equation (right) for three different numbers of colloca-
tion nodes M and different values of ν. The number of SDC or ISDC sweeps
performed is shown in parentheses. In each case, sweeps are performed until
the SDC or ISDC residual is below 5× 10−8. To simplify the analysis in the
presence of the weighting matrix, the V-cycles required to invert the weight-
ing matrix are not counted here. In the last row, the amount of V-cycles
saved by ISDC is given in percent of the required SDC cycles.

In most cases, ISDC provides a substantial reduction of the total number of
required multigrid V-cycles and requires only slightly more sweeps to converge
than SDC. The most savings can be obtained if the number of multigrid V-
cycles in SDC is high but ISDC does not lead to a significant increase in
sweeps, which is the case for mildly stiff problems (e.g. ν = 10 for heat
equation and ν = 1 and ν = 10 for Burgers) or stiff problems with small
values for M . For stiff problems with large M (e.g. heat equation with ν =
100 and M = 7), however, ISDC leads to a more significant increase in
required sweeps, therefore only resulting in small savings. For the non-stiff
cases, particularly for Burger’s equation, ISDC does not provide much benefit,
but also does no harm: the multigrid solves in SDC take only very few V-
cycles to converge, so that SDC and ISDC are almost identical (for Burgers
with ν = 0.1, SDC and ISDC are actually identical). In a sense, for simple



6 R. Speck et al.

problems where the stopping criterion of the multigrid solver is reached after
one or two V-cycle anyhow, SDC automatically reduces to ISDC.

In summary, the tests presented here suggest that replacing full multigrid
solves by a small number of V-cycles in SDC only leads to a small increase
in the total number of SDC sweeps required for convergence but can sig-
nificantly reduce the computational cost of each sweep. The savings in the
overall number of multigrid V-cycles of ISDC directly translates into faster
run times of ISDC runs compared to classical SDC.

Preliminary numerical tests not document here suggest that, as long as the
approximate solution of the linear system is sufficiently accurate, the order of
ISDC still increases by each iteration, as shown for SDC in Xia et al. [2007].
A detailed study confirming this, including a possible extension of the proof,
is left for future work.

4.3 Interpretation

The good performance of ISDC in the examples presented above is mainly
due to the choice of the starting values for the multigrid solver. When per-
forming the implicit Euler step to compute uk+1

m+1, the value uk
m+1 from the

previous SDC sweep gives a very good starting value, particularly in later
sweeps. Therefore, even two multigrid V-cycles are sufficient to approximate
the real solution of the linear system of equations reasonably well. This effect
can be observed by monitoring the number of V-cycles in classical SDC. Dur-
ing the first sweep, many more V-cycles are typically required for multigrid
to converge than in later sweeps where the initial guess becomes very accu-
rate as the SDC iterations converge. In fact, during the last sweeps of SDC,
a single V-cycle is often sufficient for solving the implicit system. Hence, the
additional sweeps required by ISDC are mainly due to the less accurate ap-
proximations during the first sweeps. As soon as the initial guess uk

m+1 for
uk+1

m+1 is good enough, ISDC basically proceeds like SDC. A computational
experiment that confirms this is as follows: if, when solving for uk+1

m+1, we
replace the initial guess with the zero vector, or even uk+1

m , then ISDC fails
to converge altogether. On the other hand, SDC still convergences in this sce-
nario, but the number of required multigrid V-cycles increases dramatically.

It is important to contrast this behavior to non-iterative schemes like diag-
onally implicit Runge-Kutta, where usually only the value from the previous
time step or stage is available to be used as starting value. Our experience
with SDC methods suggests that more multigrid V-cycles would be required
to solve each stage in a DIRK scheme than in later SDC iterations. Hence,
simply counting the number of implicit function evaluations required could
be a misleading way to compare the cost of SDC and DIRK schemes.
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5 Conclusion and Outlook

The paper presents a variant of spectral deferred corrections called inexact
spectral deferred corrections that can significantly reduce the computational
cost of SDC. In ISDC, full spatial solves within SDC sweeps with an implicit
or semi-implicit Euler are replaced by only a few V-cycles of a multigrid. In
the two investigated examples, ISDC saves up to 52% of the total multigrid
V-cycles required by SDC with full linear solves in each step, while only min-
imally increasing the number of sweeps required to reduce the SDC residual
below some set tolerance. The main reason for the good performance of ISDC
is that the iterative nature of SDC provides very accurate initial guesses for
the multigrid solver. Besides providing significant speedup, ISDC essentially
removes the need to define a tolerance or maximum number of iterations for
the spatial solver.

A natural extension of the work presented in this paper is the application
of ISDC sweeps in MLSDC, the multi-level version of SDC. MLSDC per-
forms SDC sweeps in a multigrid-like way on multiple levels. The levels are
connected through an FAS correction term in forming the coarsened spatial
representation of the problem on upper levels of the hierarchy. Using ISDC
corresponds to the “reduced implicit solve” strategy mentioned in Speck et al.
[2014b] and incorporating it into MLSDC could further improve its perfor-
mance. Finally, the “parallel full approximation scheme in space and time”
(PFASST, see Minion [2010], Emmett and Minion [2012, 2014] for details)
performs SDC sweeps on multiple levels combined with a forward transfer of
updated initial values in a manner similar to Parareal (see Lions et al. [2001]).
Instead of performing a full time integration as done in Parareal, PFASST
interweaves SDC sweeps with Parareal iterations so that on each time level,
only a single SDC sweep is performed (i.e. an inexact time integrator is ap-
plied), leading to a time-parallel method with good parallel efficiency (see
e.g. Speck et al. [2014a] and Ruprecht et al. [2013]). Integrating ISDC into
PFASST could further improve its parallel efficiency.
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