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1 Abstract

The intrusive polynomial chaos approach for uncertainty quantification in nu-
merous engineering problems constitutes a computationally challenging task.
Indeed, Galerkin projection in the spectral stochastic finite element method
(SSFEM) leads to a large-scale linear system for the polynomial chaos co-
efficients of the solution process. The development of robust and efficient
solution strategies for the resulting linear system therefore is of paramount
importance for the applicability of the SSFEM to practical engineering prob-
lems. The solution algorithms should be parallel and scalable in order to ex-
ploit the available multiprocessor supercomputers. Therefore, we formulate a
two-level Schwarz preconditioner for the polynomial chaos based uncertainty
quantification of large-scale computational models.

2 Introduction

For large-scale problems, domain decomposition techniques are a natural way
to split the problem into smaller subproblems that can be solved in parallel
on multiprocessors computers. To this end, stochastic versions of FETI-DP
and BDDC domain decomposition techniques for uncertainty quantification
of large-scale problems have been recently proposed in [2, 6, 7]. In this paper,
we formulate two-level Schwarz domain decomposition technique for the so-
lution of the large-scale linear system arising from the SSFEM discretization.
In the stochastic Schwarz preconditioner, we partition the spatial domain
and preserve all the couplings along the stochastic directions. Consequently,
stochastic Dirichlet problems are defined and solved on each subdomain con-
currently. The solution of these local problems are used to define the first
level of the preconditioner. A coarse grid correction is added to the one-level
preconditioner to provide a global mechanism to propagate information over
the subdomains. This global exchange of information across the spacial and
stochastic directions leads to a scalable preconditioner. It turns out that the
one-level stochastic Schwarz preconditioner based on the mean properties
can be viewed as a parallel generalization of the block-diagonal mean based
preconditioner [3], whereby the associated deterministic problems are solved
in parallel using the deterministic Schwarz preconditioner. For the numerical
illustrations, a two dimensional stochastic elliptic PDE with spatially varying
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random coefficients is considered. The numerical scalability of the algorithm
is investigated with respect to the geometric parameters and the strength of
the input uncertainty, dimension and order of the stochastic expansion.

3 Mathematical Formulations

We consider the case of finite dimensional noise in a suitable probability space
(Θ,Σ,P) [1]. That is we assume that there exist a finite set of independent
and identically distributed random variables ξ(θ) = {ξ1(θ), ξ2(θ), · · · , ξM (θ)}
with joint probability density function p(ξ) = p1(ξ1)p2(ξ2) · · · pM (ξM ) which
can be used to paramatrize the input uncertainty. Consider the following
stochastic boundary value problem: Find a random function u(x, ξ(θ)) : Ω×
Γ → R such that:

−∇ · (κ(x, ξ(θ))∇u(x, ξ(θ))) = f(x), in Ω × Γ,

u(x, ξ(θ)) = 0, on ∂Ω × Γ,
(1)

where (Ω ⊂ R
d, d = 1, 2, 3) denotes a bounded domain with Lipschitz bound-

ary ∂Ω and Γ = Γ1×Γ2 · · ·×ΓM ⊂ R
M is the support of the joint probability

density function p(ξ) of the random vector ξ(θ). Here we assume that the
input uncertainty κ(x, ξ(θ)) : Ω × Γ → R is a P-almost surely bounded and
strictly positive random field, that is

0 < κmin ≤ κ(x, ξ(θ)) ≤ κmax < +∞, a.e. in Ω × Γ. (2)

The weak form of the stochastic boundary value problem (1), can be stated
as: Find u(x, ξ) ∈ V such that for all v ∈ V

∫

Γ

(
∫

Ω

κ(x, ξ)∇u(x, ξ)∇v(x, ξ)dx
)

p(ξ)dξ =

∫

Γ

(
∫

Ω

f(x)v(x, ξ)dx

)

p(ξ)dξ

where the tensor product function space V = H1
0 (Ω)⊗ L2(Γ ) is defined as

V = {v(x, ξ(θ)) : Ω × Γ → R | ‖v‖2V <∞} ⊂ H1
0 (Ω)⊗ L2(Γ ), (3)

here H1
0 (Ω) and L2(Γ ) represent the deterministic Hilbert space and the

space of second-order random variables, respectively. The energy norm ‖ · ‖2V
is given by

‖v(x, ξ(θ))‖2V =

∫

Γ

(
∫

Ω

κ(x, ξ)|∇v(x, ξ)|2dx
)

p(ξ)dξ. (4)

4 Stochastic Process Representation

Let κ0(x) and Cκκ(x1,x2) denote the mean and covariance function of the
input uncertainty, then the Karhunen-Loéve expansion (KLE) can be used
to represent κ(x, ξ) as
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κ(x, θ) =

M
∑

i=0

κi(x)ξi(θ), (5)

where ξ0(θ) = 1 and κi(x) = σ
√
λiφi(x); i ≥ 1, here σ denotes the standard

deviation of the input process and λi and φi(x) are the eigenpairs of the
covariance kernel and can be obtained from the solution of the following
integral equation

∫

Ω

Cκκ(x1,x2)φi(x1)dx1 = λiφi(x2), (6)

The solution process (with a priori unknown mean and covariance function)
can be approximated using the PC expansion as

u(x, θ) =

N
∑

j=0

uj(x)Ψj(ξ(θ)), (7)

where N+1 denote the total number of terms in PCE and uj(x) are the deter-
ministic PC coefficients to be determined and Ψj(ξ) are a set of multivariate
orthogonal random polynomials with the following properties

〈Ψ0〉 =
∫

Γ

Ψ0(ξ)p(ξ)dξ = 1, 〈Ψj〉 = 0, j > 0, and 〈ΨjΨk〉 = δjk〈Ψ2
j 〉.

5 The Stochastic Finite Element Discretization

Let Th denote the triangulation of the physical domain Ω with a maximum
element size h, and let the associated finite element space Xh ⊂ H1

0 (Ω)
be spanned by the traditional nodal basis functions {φl(x)}Ll=1. Further, for
the stochastic discretization, let Yp ⊂ L2(Γ ) be a finite dimensional space
spanned by the PC basis functions {Ψj(ξ)}Nj=0 in the random variables ξ.
Thus, the approximate SSFEM solution uhp in the discrete tensor product
space Xh ⊗ Yp ⊂ H1

0 (Ω)⊗ L2(Γ ) can be expressed as

uhp(x, ξ) =

N
∑

j=0

L
∑

l=1

ujlφl(x)Ψj(ξ). (8)

Using (5) and (8), we can translate the stochastic weak form defined in (3)
into the following coupled set of deterministic linear system

N
∑

j=0

M
∑

i=0

L
∑

l=1

ujl

(
∫

Γ

ξiΨj(ξ)Ψk(ξ)p(ξ)dξ

)(
∫

Ω

κi(x)∇φl(x) · ∇φm(x)dx

)

=

∫

Γ

(
∫

Ω

f(x)φm(x)dx

)

Ψk(ξ)p(ξ)dξ, m = 1, · · · , L, k = 0, · · · , N

(9)
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The linear system arising from (9) can be expressed as follows

M
∑

i=0

A(i)UC(i) = F, (10)

where we define

A
(i)
lm =

∫

Ω

κi∇φl · ∇φmdx, C
(i)
jk =

∫

Γ

ξiΨj(ξ)Ψk(ξ)p(ξ)dξ. (11)

Fmk =

∫

Γ

(
∫

Ω

f(x)φm(x)dx

)

Ψk(ξ)p(ξ)dξ. (12)

Equation(10) can be vectorized by taking the vec(·) operator for the both
sides leading to the following concise form

AU = F , (13)

where

A =

M
∑

i=0

C(i) ⊗A(i), U = vec(U) and F = vec(F). (14)

6 Schwarz Preconditioner for Stochastic PDEs

In the Schwarz preconditioner for the stochastic problem, the physical domain
Ω is partitioned into a number of overlapping subdomain {Ωs, 1 ≤ s ≤ S}
by splitting the vertices of the computational mesh. For each subdomain
Ωs ⊂ Ω, let Rs be a restriction matrix of size ns × n (where ns and n are
the size of the subdomain and global unknowns) to extract the local nodal
values from the global unknowns vector as

Us = RsU, (15)

applying the vec(·) operator to (15), leads to

vec(Us) = (I⊗Rs)vec(U), (16)

here I is (N+1)×(N+1) identity matrix. Let Us = vec(Us) andRs = (I⊗Rs)
denote the stochastic subdomain nodal values and the stochastic restriction
matrix, then (16) becomes

Us = RsU , (17)

Consequently, the stochastic stiffness matrix for subdomain Ωs can be defined
as a block extracted from the global stiffness matrix A as
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As = RsART
s , (18)

= (I⊗Rs)

(

M
∑

i=0

C(i) ⊗A(i)

)

(I⊗RT
s ), (19)

=
M
∑

i=0

C(i) ⊗A(i)
s , (20)

Next, we define the one-level stochastic Schwarz preconditioner as a direct
sum of the solution of the local stochastic Dirichlet problems as:

M−1 =

S
∑

s=1

RT
s A−1

s Rs, (21)

which can be expressed as follows

M−1 =

S
∑

s=1

(I⊗RT
s )

(

M
∑

i=0

C(i) ⊗A(i)
s

)−1

(I⊗Rs). (22)

Remark 1. The stochastic Schwarz preconditioner has the same structure as
the stochastic Neumann-Neumann preconditioner in [5].

Remark 2. The stochastic Schwarz preconditioner based on the mean prop-
erties can be obtained from (22) by setting i = 0 which gives

M−1
0 = [C(0)]−1 ⊗

S
∑

s=1

RT
s [A

(0)
s ]−1Rs, (23)

where A
(0)
s = RsA

(0)RT
s and C(0) = δij〈Ψ2

i 〉.

Remark 3. For one subdomain S = 1 and normalized PC basis functions,
C(0) = I, the mean-based Schwarz preconditioner defined in (23) becomes

M−1
0 = I⊗ [A(0)]−1. (24)

Remark 4. The one-level stochastic Schwarz preconditioner based on the
mean properties is a generalization of the block-diagonal mean based precon-
ditioner [3] whereby the associated deterministic problem is solved in parallel
using the deterministic Schwarz preconditioner.

7 Coarse Grid Correction

Domain decomposition preconditioners can achieve a scalable performance
provided that they are equipped with a coarse grid correction for global
communication. To define a coarse problem for the stochastic Schwarz pre-
conditioner, let RT

0 ∈ R
ni×n0 be an interpolation matrix defined as
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RT
0 =











ψ1(x1) ψ2(x1) · · · ψn0
(x1)

ψ1(x2) ψ2(x2) · · · ψn0
(x2)

...
... · · ·

...
ψ1(xni

) ψ2(xni
) · · · ψn0

(xni
)











(25)

where {ψi(x)}n0

i=1 is a set of linear basis functions, here n0 denotes the di-
mension of the coarse space and (x1,x2, · · · ,xni

) are the coordinates of the
nodal points of the fine mesh. The corresponding stochastic coarse space in-
terpolation operator can be defined as

R0 = I⊗R0, (26)

and thus the coarse grid correction for the stochastic problem can be obtained
as

A0 = RT
0 AR0. (27)

According, the two-level stochastic Schwarz preconditioner can be defined
by adding the coarse grid correction to the one-level preconditioner in (21)
leading to

M−1 = RT
0 A−1

0 R0 +

S
∑

s=1

RT
s A−1

s Rs. (28)

Theorem 1. There exists positive constants C and d that are independent
of the geometric parameters (i.e. mesh size h, subdomain size H and the
overlap distance δ) and the stochastic parameters (i.e. strength of randomness
σ, dimension M and order p of the stochastic expansion), such that

cond(M−1A) ≤ C(d+ 1)2
(

κmax

κmin

)2
H

δ
. (29)

Proof. See [4]

8 Numerical Results

In this section, we illustrate the performance of the two-level stochastic
Schwarz preconditioner defined in (28). In particular, we consider the fol-
lowing elliptic SPDE

−∇ · (κ(x, θ)∇u(x, θ)) = f(x), in Ω ×Θ,

u(x, θ) = 0, on ∂Ω ×Θ,
(30)

where f(x) denotes the source term taken as unity. The diffusivity coefficient
κ(x, θ) is modelled as a uniform random field with an invariant mean and the
following exponential covariance function

Cκκ(x,y) = σ2 exp

(−|x1 − y1|
b1

+
−|x2 − y2|

b2

)

, (31)
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Fig.(1(a)) and Fig.(1(b)) show the mean and standard deviation of the so-
lution process. In Fig.(2(a)) and Fig.(2(b)), we show the condition number
growth of the Schwarz preconditioner for fixed number of random variables
M = 2 and fixed order p = 2, respectively, while increasing the global prob-
lem size by adding more subdomains with fixed problem size per subdo-
main. Table(1) and Table(2) show the condition number and iterations count
of the preconditioned conjugate gradient solver equipped with Schwarz pre-
conditioner with respect to dimension and order and coefficient of variation
(CoV), respectively.

(a) mean (b) st. deviation

Fig. 1 The mean and standard deviation of the solution process
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Fig. 2 Condition number growth with respect to fixed problem size per subdomain

9 Conclusion

A two-level Schwarz domain decomposition preconditioner is proposed for the
iterative solution of the large-scale linear system arising from the stochastic
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Table 1 Condition number and itera-

tions count with respect to M and p

M p cond iter

1 1 10.1642 17
2 10.1706 19
3 10.1725 19
4 10.1733 19

2 1 10.1781 19

2 10.1834 19
3 10.1861 19
4 10.1876 19

3 1 10.1785 19
2 10.1842 19
3 10.1873 19
4 10.1892 19

4 1 10.1816 19
2 10.1887 20
3 10.1926 20
4 10.1951 20

Table 2 Condition number and itera-

tions count with respect to the CoV

σ

µ
p cond iter

0.2 1 10.1760 19
2 10.1812 19
3 10.1841 19
4 10.1860 19

0.3 1 10.1816 19
2 10.1887 20

3 10.1926 20

4 10.1951 20

0.4 1 10.1871 19

2 10.1959 20
3 10.2006 20
4 10.2035 20

0.5 1 10.1925 20
2 10.2030 20
3 10.2085 20
4 10.2122 20

finite element discretization. The proposed preconditioner demonstrates a
scalable performance with respect to the mesh parameters, strength of ran-
domness, dimension and order of the stochastic expansion
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