
A FETI-DP algorithm for saddle point
problems in three dimensions

Xuemin Tu1 and Jing Li2

1 Introduction

In [2, 7, 6], a new class of FETI-DP type domain decomposition algorithms
was introduced and analyzed by the authors for solving incompressible Stokes
equations in two dimensions. Both discontinuous and continuous pressures
can be used in the mixed finite element discretization. In both cases, the
indefinite system of linear equations can be reduced to a symmetric posi-
tive semi-definite system. Therefore, the preconditioned conjugate gradient
method can be applied.

Both lumped and Dirichlet preconditioners have been studied in [2, 7, 6].
For the lumped preconditioner, it has been proved in [2] that the coarse
level space can be chosen as simple as for solving scalar elliptic problems
corresponding to each velocity component to achieve a scalable convergence
rate. However, for the Dirichlet preconditioner, most existing FETI-DP and
BDDC type algorithms [4, 1, 3] for Stokes problems use subdomain Stokes
extensions in the preconditioners and the coarse level velocity space has to
contain sufficient components to enforce divergence free subdomain bound-
ary velocity conditions. Due to this divergence free requirement, the coarse
space becomes very complicated, especially for three-dimensional problems
as discussed in [3]. For the Dirichlet preconditioner introduced in [7, 6], an
application of subdomain harmonic extension instead of Stoke extension in
the preconditioner makes it possible to remove the divergence free constraints
for the coarse level velocity space. Unfortunately, the analysis provided for
the algorithms in [7, 6] still requires the divergence free constraints.

In this paper, we provide a new analysis for the algorithms in [7, 6], which
can not only analyze both lumped and Dirichlet preconditioners in a same
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framework, but also remove the divergence free constraints for the Dirichlet
preconditioner. We then extended this class of algorithms [2, 7, 6] to three
dimensional problems; see [8] for more details.

2 Discretization, domain decomposition, and a reduced
interface system

Let Ω be a bounded, three-dimensional polyhedral domain. We consider

solving the following saddle point problem: find u∗ ∈
(
H1

0 (Ω)
)3

= {v ∈
(H1(Ω))3

∣∣ v = 0 on ∂Ω} and p∗ ∈ L2(Ω), such that{
a(u∗,v) + b(v, p∗) = (f ,v), ∀v ∈

(
H1

0 (Ω)
)3
,

b(u∗, q) = 0, ∀q ∈ L2(Ω) ,
(1)

where

a(u∗,v) =

∫
Ω

∇u∗ · ∇v, b(u∗, q) = −
∫
Ω

(∇ · u∗)q, (f ,v) =

∫
Ω

f · v.

The solution of (1) is not unique and the pressure p∗ is determined up to an
additive constant.

The domain Ω is partitioned into shape-regular rectangular elements of
characteristic size h, and the Q2-Q1 Taylor-Hood mixed finite element is
used to solve (1). The pressure finite element space, Q ⊂ L2(Ω), is taken
as the space of continuous piecewise trilinear functions while the velocity

finite element space, W ∈
(
H1

0 (Ω)
)3

, is formed by the continuous piecewise
triquadratic functions.

The finite element solution (u, p) ∈W
⊕
Q of (1) satisfies[

A BT

B 0

] [
u
p

]
=

[
f
0

]
, (2)

where A, B, and f represent, respectively, the restrictions of a(·, ·), b(·, ·) and
(f , ·) to the finite-dimensional spaces W and Q. The solution of (2) always
exists and is uniquely determined when the pressure is required to have a
zero average.

The Q2-Q1 Taylor-Hood mixed finite element space W×Q is inf-sup stable
in the sense that there exists a positive constant β, independent of h, such
that, in matrix/vector form,

sup
w∈W

〈q,Bw〉2

〈w, Aw〉
≥ β2 〈q, Zq〉 , ∀q ∈ Q/Ker(BT ). (3)
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Here the matrix Z represents the mass matrix defined on the pressure finite
element space Q, i.e., for any q ∈ Q, ‖q‖2L2 = 〈q, Zq〉. It is easy to see, cf. [5,
Lemma B.31], that Z is spectrally equivalent to h3I for three-dimensional
problems, where I represents the identity matrix of the same dimension.

The domain Ω is decomposed into N non-overlapping polyhedral subdo-
mains Ωi, i = 1, 2, ..., N . Each subdomain is the union of a bounded number
of elements, with the diameter of the subdomain in the order of H. The nodes
on the interface Γ of neighboring subdomains match across the subdomain
boundaries and Γ is composed of subdomain faces, which are regarded as
open subsets of Γ shared by two subdomains, subdomain edges, which are
regarded as open subsets of Γ shared by more than two subdomains, and of
the subdomain vertices, which are end points of edges.

The velocity and pressure finite element spaces W and Q are decomposed
into

W = WI

⊕
WΓ , Q = QI

⊕
QΓ ,

where WI and QI are direct sums of independent subdomain interior velocity

spaces W
(i)
I , and interior pressure spaces Q

(i)
I , respectively. WΓ and QΓ are

subdomain interface velocity and pressure spaces, respectively. All functions
in WΓ and QΓ are continuous across Γ ; their degrees of freedom are shared
by neighboring subdomains. A partially sub-assembled subdomain interface

velocity space W̃Γ is defined as

W̃Γ = W∆

⊕
WΠ =

(
N⊕
i=1

W
(i)
∆

)⊕
WΠ .

WΠ is the continuous, coarse level, primal velocity space which is typi-
cally spanned by subdomain vertex nodal basis functions, and/or by inter-
face edge/face-cutoff functions with constant nodal values on each edge/face,
or with values of positive weights on these edges/faces. The primal, coarse
level velocity degrees of freedom are shared by neighboring subdomains. The
complimentary space W∆ is the direct sum of independent subdomain dual

interface velocity spaces W
(i)
∆ , which correspond to the remaining subdomain

interface velocity degrees of freedom and are spanned by basis functions which

vanish at the primal degrees of freedom. Thus, an element in W̃Γ typically
has a continuous primal velocity component and a discontinuous dual velocity
component.

We construct a matrix B∆ from {0, 1,−1} to enforce the continuity for
dual velocity components. For any w∆ in W∆, each row of B∆w∆ = 0
implies that the two independent degrees of freedom from the neighboring
subdomains be the same. The range of B∆ applied on W∆ is a vector space of
the Lagrange multipliers, denoted by Λ. For each node x on the subdomain
boundary Γ , we define a positive scaling factor δ†(x) = 1/Nx, where Nx
represents the number of subdomains sharing x. Multiplying the entries on
each row of B∆ by the corresponding scaling factor δ†(x) gives us B∆,D.
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The original system (2) is equivalent to: find (uI , pI , u∆, uΠ , pΓ , λ) ∈
WI

⊕
QI
⊕

W∆

⊕
WΠ

⊕
QΓ

⊕
Λ, such that

AII BTII AI∆ AIΠ BTΓI 0

BII 0 BI∆ BIΠ 0 0

A∆I B
T
I∆ A∆∆ A∆Π BTΓ∆ BT∆

AΠI B
T
IΠ AΠ∆ AΠΠ BTΓΠ 0

BΓI 0 BΓ∆ BΓΠ 0 0

0 0 B∆ 0 0 0





uI

pI

u∆

uΠ

pΓ

λ


=



fI

0

f∆

fΠ

0

0


, (4)

where the sub-blocks in the coefficient matrix represent the restrictions of A
and B of (2) to appropriate subspaces. The leading three-by-three block can
be ordered to become block diagonal with each diagonal block representing
one independent subdomain problem.

Lemma 1. [8, Lemma 4] The basis vector in the null space of (4), corre-
sponding to the one-dimensional null space of the original incompressible
Stokes system (2) , is(

0, 1pI , 0, 0, 1pΓ , −B∆,D[BTI∆ BTΓ∆]

[
1pI
1pΓ

])
. (5)

Here 1pI ∈ QI and 1pΓ ∈ QΓ represent vectors with each entry equal to 1.

System (4) can be reduced to a Schur complement problem for the variables
(pΓ , λ)

G

[
pΓ

λ

]
= g, (6)

where

G = BCÃ
−1BTC , g = BCÃ

−1


fI

0

f∆

fΠ

 , (7)

with

Ã =


AII BTII AI∆ AIΠ

BII 0 BI∆ BIΠ

A∆I B
T
I∆ A∆∆ A∆Π

AΠI B
T
IΠ AΠ∆ AΠΠ

 and BC =

[
BΓI 0 BΓ∆ BΓΠ

0 0 B∆ 0

]
. (8)

G is symmetric positive semi-definite. The null space of G can be derived
from Lemma 1, and its basis has the form
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1pΓ , −B∆,D[BTI∆ BTΓ∆]

[
1pI
1pΓ

])
.

Let X = QΓ
⊕
Λ. The range of G, denoted by RG, is the subspace of X,

which is orthogonal to the null space of G and has the form

RG =

{[
gpΓ

gλ

]
∈ X

∣∣∣ gTpΓ 1pΓ − gTλ
(
B∆,D[BTI∆ BTΓ∆]

[
1pI
1pΓ

])
= 0

}
. (9)

The restriction of G to its range RG is positive definite. The conjugate gradi-
ent method will be used to solve (6), with preconditioners given in the next
section.

We denote

Arr =

 AII BTII AI∆

BII 0 BI∆

A∆I B
T
I∆ A∆∆

 , AΠr = ATrΠ =
[
AΠI BTIΠ AΠ∆

]
, fr =

 fI0
f∆

 ,
and define the Schur complement SΠ = AΠΠ −AΠrA−1rr ArΠ , which is sym-
metric positive definite and defines the coarse level problem of this algorithm.

The main operation in the implementation of multiplying G by a vector is
the product of Ã−1 with a vector consisting of fr and fΠ . This product can
be represented by[

A−1rr fr

0

]
+

[
−A−1rr ArΠ

IΠ

]
S−1Π

(
fΠ −AΠrA−1rr fr

)
,

which requires solving the coarse level problem once and independent subdo-
main Stokes problems with Neumann type boundary conditions twice.

3 Preconditioners and condition number bounds

We define Ṽ = WI

⊕
QI
⊕

W∆

⊕
WΠ , and its subspace

Ṽ0 =
{
w = (wI , pI , w∆, wΠ) ∈ Ṽ : BIIwI +BI∆w∆ +BIΠwΠ = 0

}
.

For any v ∈ Ṽ0, the value 〈v, v〉Ã = vT Ãv is independent of its pressure

component pI . 〈·, ·〉Ã defines a semi-inner product on Ṽ0; 〈v, v〉Ã = 0 if and
only if the velocity component of v is zero while its pressure component can
be arbitrary. We denote the restriction operator from Ṽ onto W∆ by R̃∆
such that for any v = (wI , pI , w∆, wΠ) ∈ Ṽ , R̃∆v = w∆.
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Let H∆ represent the direct sum of discrete subdomain harmonic extension
operators. Let M−1L,λ = B∆,DR̃∆ÃR̃

T
∆B

T
∆,D and M−1D,λ = B∆,DH∆B

T
∆,D. The

lumped and Dirichlet preconditioners M−1L and M−1D for solving (6) are given
by

M−1L =

[
α
h3 IpΓ

M−1L,λ

]
and M−1D =

[
α
h3 IpΓ

M−1D,λ

]
.

Here IpΓ is the identity matrix of the same length as pΓ . α is a given constant,
whose value is typically taken as 1. We introduce α in the preconditioner
just for the convenience in the numerical experiments to demonstrate the
convergence rates of the proposed algorithm.

For both lumped and Dirichlet preconditioners, the coarse space includes
only subdomain corner and edge-average variables for each velocity compo-
nent, just as for solving scalar elliptic problems. Such coarse space is sufficient
for this algorithm to achieve scalable convergence rates as given in the fol-
lowing theorem for both type preconditioners, denoted here by M−1.

Lemma 2. [8, Lemma 10]. There exists a constant C, such that for all v ∈
Ṽ0, 〈

M−1BCv,BCv
〉
≤ C (α+ Φ(H/h))

〈
Ãv, v

〉
.

Here, for the lumped preconditioner, Φ(H,h) = C(H/h)(1 + log (H/h)), and
for the Dirichlet preconditioner, Φ(H,h) = C(1 + log (H/h))2.

Lemma 3. [8, Lemma 11] There exists a constant C, such that for any

nonzero y = (gpΓ , gλ) ∈ RG, there exits v ∈ Ṽ0, which satisfies BCv = y,
〈v, v〉Ã 6= 0, and〈

Ãv, v
〉
≤ C max

{
1, 1

α

}(
1 + 1

β2

) 〈
M−1y, y

〉
.

Theorem 1. [8, Theorem 1] There exist positive constants c and C, such
that for all x in the range of M−1G,

min {1, α} cβ2

(1 + β2)
〈Mx, x〉 ≤ 〈Gx, x〉 ≤ C (α+ Φ(H/h)) 〈Mx, x〉 .

4 Numerical experiments

We solve the saddle point problem (1) on the cube Ω = [0, 1]3 with a zero
Dirichlet boundary condition. The right-hand side f is chosen such that the
exact solution is

u =

 sin2(πx) (sin(2πy) sin(πz)− sin(πy) sin(2πz))

sin2(πy) (sin(2πz) sin(πx)− sin(πz) sin(2πx))

sin2(πz) (sin(2πx) sin(πy)− sin(πx) sin(2πy))

 , p = xyz − 1

8
.
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The Q2-Q1 Taylor-Hood mixed finite element is used and the precondi-
tioned system is solved by a conjugate gradient (CG) method. The CG it-
eration is stopped when the L2−norm of the residual is reduced by a factor
of 10−6. We use the tridiagonal Lanczos matrix generated in the iteration to
estimate the extreme eigenvalues of M−1G.

For both preconditioners, the coarse level velocity space is the same as for
solving scalar elliptic problems in [5, Algorithm 6.25] corresponding to each
velocity component, which is spanned by the subdomain vertex nodal basis
functions and subdomain edge-cutoff functions.

We take α = 1 in Table 1 and α = 1/2 in Table 2, to demonstrate more
clearly the upper eigenvalue bound in Theorem 1. Using the Dirichlet pre-
conditioner can reduce Φ(H/h) compared with the lumped preconditioner.
However, for a small value of H/h, α = 1 will be dominant in the upper
bound and the effect of Φ(H/h) on the convergence rate is not visible in
Table 1. When α is reduced to 1/2, Φ(H/h) becomes visible and the upper
eigenvalue bounds in Table 2 exhibit the pattern of Φ(H/h) for both pre-
conditioners. They are independent of the number of subdomains for fixed
H/h; for fixed number of subdomains, they depend on H/h in the order of
(H/h)(1+log (H/h)) for the lumped preconditioner, and (1+log (H/h))2 for
the Dirichlet preconditioner. The lower eigenvalue bounds in Table 2 are half
of those in Table 1 since α is reduced by half, and they are also independent
of the mesh size, consistent with Theorem 1.

We also comment that the inf-sup stability constant β of the mixed finite
element space determines the lower eigenvalue bound in Theorem 1, which is
quite small as shown in Tables 1 and 2 for this example. Some mixed finite
element spaces with discontinuous pressures have better inf-sup stability and
as a result give better lower eigenvalue bounds in Theorem 1.
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